

FORMICA AMBIENTE S.R.L. <u>sede legale</u> Via Groenlandia, 47 - 00144 - Roma tel. 06.59290508 fax 06.59290408 <u>sede operativa</u>

c.da Formica snc - 72100 - Brindisi tel. 0831555959 fax: 0831555961 info@formicambiente.it

Elaborazione rapporti di monitoraggio periodico in relazione all'intervento di MISO da eseguirsi presso discarica FORMICA AMBIENTE approvato con DD n.39 del 22/02/2019, ai fini della valutazione dell'efficacia dello sbarramento idraulico progettato per trattamento acque di falda.

Titolo elaborato Report di monitoraggio trimestrale TAF (Settembre-Novembre'20) secondo progetto di MISO approvato con D.D. n.39 del 22/02/2019		Elaborato R5 Pagine: 57	
Cod. Commessa:	Nome file Elaborato:	Data: Febbraio	2021
SER_09_20	S0920_BR50_0221	Scala: //	
Rev. Data Descriz	ione modifica	Verificato FC	Approvato FC
	ione mounica	Vermeuto i C	Approvato rc

MOD-850-Y

Al termini di legge, ci riserviamo la proprietà di questo documento con divieto di riprodurlo o di renderlo comunque noto a terzi senza la nostra autorizzazione

27 Novembre 2020

5 Data

Revisione

Edizione

Pagina **2** di **57**

INDICE

INTRODUZIONE5	5
1. ESECUZIONE PIANO DI MONITORAGGIO SECONDO D.D. N.39 DEL 22/02/2019 7	7
1.1 VERIFICHE IMPIANTISTICHE	7
1.2 VERIFICHE IDROGEOLOGICHE14	4
1.2.1 Mappe freatimetriche e dei gradienti idraulici	ļ
1.2.2 Mappa della superficie piezometrica con individuazione della zona d	i
cattura 19)
1.3 VERIFICHE IDROCHIMICHE20	5
1.3.1 Elaborazioni statistiche27	7
1.3.2 Trend di concentrazione30)
1.3.3 Mappe concentrazioni33	3
1.3.4 Monitoraggio parametri chimico-fisici	7
1.3.5 Diagrammi massa rimossa/tempo39)
1.3.6 Monitoraggio ARPA in corso d'opera42	2
1.4 PIEZOMETRI DI CONTROLLO44	4
2. CONCLUSIONI46	5
ALLEGATI52	2
ALLEGATO 1 – RAPPORTO DI INTERVENTO 31/08/202053	3
ALLEGATO 2 - RAPPORTI DI INTERVENTO 20-23/09/2020 E 29/10/2020 54	1
ALLEGATO 3 – RAPPORTO DI INTERVENTO 25/01/202055	5
ALLEGATO 4- RAPPORTI DI PROVA56	5
ALLEGATO 5- RAPPORTI DI PROVA ARPA PUGLIA57	7
INDICE DELLE FIGURE	
Figura 1: Volumi emunti giornalmente da ciascun pozzo (Vgiornaliero/giorni); in questo grafico	è
stato tenuto conto delle interruzioni TAF dovuto mancanza di energia elettrica	L
Figura 2: Variogramma sperimentale dei dati dei mesi da settembre a novembre 2020 16	5
Figura 3: Freatimetrie da settembre a novembre 2020	9
Figura 4: Freatimetria e zona di cattura teoriche (Dicembre 2016)20)
Figura 5: Freatimetria e zona di cattura Novembre 202021	1
Figura 6: Confronto tra carico falda teorico (dicembre 2016) e carico falda novembre 2020 22	2
Figura 7: Variogramma sperimentale agosto 2020 (no pozzi A, B, C)	3

Pagina **3** di **57**

Figura 8: Freatimetrie agosto 2020 (no pozzi A, B, C)24
Figura 9: Freatimetria e zona di cattura teoriche (Dicembre 2016)25
Figura 10: Freatimetria e zona di cattura Agosto 2020 (no pozzi A, B, C)25
Figura 11: Confronto tra carico falda teorico (dicembre 2016) e carico falda agosto 2020 26
Figura 12: Box & Whisker per 1,1 DCE (a) e per 1,2 DCP (b) con indicazione della CSC (linea
tratteggiata)28
Figura 13: Andamento temporale dei valori di 1,1 DCE (a) e 1,2 DCP (b) con indicazione della CSC
(linea tratteggiata)30
Figura 14: Mappa di distribuzione delle concentrazioni di 1,1 DCE del mese di settembre, ottobre
novembre 202032
Figura 15: Grafico delle concentrazioni nei piezometri lato barriera
Figura 16: Mappa di distribuzione delle concentrazioni di 1,1 DCE nel mese di settembre 2020 (a)
ottobre 2020 (b), novembre 2020 (c)34
Figura 17: Mappa di distribuzione delle concentrazioni di 1,2 DCP nel mese di settembre 2020 (a)
ottobre 2020 (b), novembre 2020 (c)
Figura 18: Andamento della Temperatura nei pozzi PE1 e PE2 (15/08-30/11/2020)37
Figura 19: Andamento del pH nei pozzi PE1 e PE2 (15/08-30/11/2020)37
Figura 20: Andamento della Conducibilità nei pozzi PE1 e PE2 (15/08-30/11/2020)38
Figura 21: Andamento del Potenziale Redox nei pozzi PE1 e PE2 (15/08-30/11/2020)
Figura 22: Andamento della percentuale di ossigeno disciolto nei pozzi PE1 e PE2 (15/08 30/11/2020)39
Figura 23: concentrazioni di 1,1DCE rilevate nei pozzi PE1 e PE2 dall'avvio del sistema P&T 40
Figura 24: concentrazioni di 1,2DCP rilevate nei pozzi PE1 e PE2 dall'avvio del sistema P&T41
Figura 25: Zona di cattura "teorica" (a) e zona di cattura aggiornata a agosto 2020 (b)44
INDICE DELLE TABELLE
Tabella 1: Sintesi verifiche impiantistiche in ottemperanza alla DD N.39/2019
Tabella 2: Sintesi funzionamento ore Periodo 15-31 Agosto 2020
Tabella 3: Sintesi funzionamento ore Periodo 1-30 Settembre 2020
Tabella 4: Sintesi funzionamento ore Periodo 1-31 Ottobre 2020
Tabella 5: Sintesi funzionamento ore Periodo 1-31 Ottobre 2020
Tabella 6: Sintesi volumi emunti Periodo 15-31 Agosto 2020
Tabella 7: Sintesi volumi emunti Periodo 1-30 Settembre 2020

R5

Report di monitoraggio trimestrale TAF (Settembre-Novembre'20) secondo progetto di MISO approvato con D.D. n.39 del 22/02/2019

Pagina **4** di **57**

Tabella 8: Sintesi volumi emunti Periodo 1-31 Ottobre 2020	. 10
Tabella 9: Sintesi volumi emunti Periodo 1-30 Novembre 2020	. 10
Tabella 10: Sintesi risultati 1,1DCE nel trimestre monitorato (CSC 0,05 μg/l)	. 13
Tabella 11: Sintesi risultati 1,2 DCP nel trimestre monitorato (CSC 0,15 μg/l)	. 13
Fabella 12: Livelli statici e quote falda da giugno ad agosto 2020	. 17
Fabella 13:Livelli statici e quote falda agosto 2020	. 23
Fabella 14:Elaborazioni statistiche dati di monitoraggio 1,1DCE	. 27
Tabella 15: Elaborazioni statistiche dati di monitoraggio 1,2DCP	. 27
Tabella 16:Confronto dati ARPA e dati Formica per 1,1 DCE (a) e 1,2 DCP (b) (novembre 2020).	. 43
Tabella 17: Sintesi risultati 1,1DCE e 1,2 DCP IV trimestre	. 45

R5

Report di monitoraggio trimestrale TAF (Settembre-Novembre'20) secondo progetto di MISO approvato con D.D. n.39 del 22/02/2019

Pagina **5** di **57**

INTRODUZIONE

Nel mese di Giugno 2018 la società Formica presenta il Progetto operativo di messa in sicurezza operativa del sito, basato sugli esiti dei test sperimentali condotti a seguito di superamenti riscontrati nel pozzo PZ5A dei contaminanti 1,1DCE e 1,2DCP.

Con **D.D. n.39 del 22/02/2019** l'Autorità competente approva il Progetto di Messa in sicurezza Operativa revisione Dicembre 2018 della Discarica di Rifiuti Speciali Formica Ambiente s.r.l. – Comune di Brindisi.

L'esecuzione del Progetto di MISO, in ottemperanza alle disposizioni di Legge e delle prescrizioni rappresentate dagli Enti prevede l'esecuzione di un monitoraggio finalizzato alla verifica della riduzione delle concentrazioni fino al raggiungimento delle CSC per le acque sotterranee relativamente ai parametri 1,1DCE e 1,2DCP nonché alla valutazione dell'efficacia dello sbarramento idraulico.

<u>La durata dell'esercizio della barriera idraulica a pieno regime prevista per un periodo pari a 12 mesi sarà condizionata al raggiungimento delle CSC a valle idrogeologica del sito</u>.

Il monitoraggio post operam avrà una durata minima biennale.

Con nota prot. 131 del 7 Ottobre 2019 la società Formica Ambiente comunica agli Enti di riferimento l'Avvio e collaudo impianto TAF e indagini falda "ante operam" – TO.

Il 29 Ottobre 2019 Arpa Puglia, previa comunicazione con nota prot. n. 32 - 14/10/2019, avvia l'esecuzione del monitoraggio Ante operam.

Terminata la fase di monitoraggio ante operam nella giornata del 11.11.2019 da parte di Arpa Puglia, la società Formica Ambiente comunica agli Enti, con nota prot. 142 del 13 Novembre 2019, la *Messa in esercizio dell'impianto TAF* da eseguirsi nella giornata del 14 Novembre 2019.

In data 01/04/2020, con nota Prot. N. 42/20 è stato trasmesso agli Enti il primo Report trimestrale (novembre 2019 – febbraio 2020).

Con nota prot. n.26582 del 29/04/2020 ARPA Puglia richiede alcune integrazioni e chiarimenti in merito alle elaborazioni eseguite nel primo Report trimestrale.

In data 26/06/2020, con nota Prot. N. 82/20 è stato trasmesso agli Enti il Report di Monitoraggio relativo al secondo trimestre (marzo – maggio 2020) di avvio dell'impianto TAF che recepisce e

Redatto da: TECNOLOGIA AMBIENTE

Pagina **6** di **57**

fornisce le integrazioni ed i chiarimenti richiesti da ARPA nel succitato parere anche per il primo Report trimestrale.

Con nota prot. n.45862 del 20/07/2020 ARPA Puglia richiede alcune integrazioni e chiarimenti in merito alle elaborazioni eseguite nel secondo Report trimestrale.

In data 05/10/2020, con nota Prot. N. 124/20 è stato trasmesso agli Enti il Report di Monitoraggio relativo al terzo trimestre (Giugno – Agosto 2020) di avvio dell'impianto TAF che recepisce e fornisce le integrazioni ed i chiarimenti richiesti da ARPA nel succitato parere anche per il secondo Report trimestrale.

Con nota prot. n.76028 del 03/11/2020 ARPA Puglia richiede alcune integrazioni e chiarimenti in merito alle elaborazioni eseguite nel terzo Report trimestrale.

Il presente documento costituisce, pertanto, il Report di Monitoraggio relativo al quarto trimestre (Settembre – Novembre 2020) ovvero ad 1 anno di avvio dell'impianto TAF che recepisce e fornisce le integrazioni ed i chiarimenti richiesti da ARPA nell'ultimo parere.

Pagina **7** di **57**

1. ESECUZIONE PIANO DI MONITORAGGIO SECONDO D.D. N.39 DEL 22/02/2019

Come già accennato, ai fini della valutazione dell'efficacia dello sbarramento idraulico, nel presente capitolo si riportano i dati relativi al quarto trimestre monitorato (Settembre-Novembre 2020) come da previsioni progettuali approvate dalla D.D. 39/2019 in relazione alle seguenti tipologie di verifiche:

- Impiantistiche
- Idrogeologiche
- Idrochimiche

Nei seguenti paragrafi si riporta uno studio di dettaglio in relazione a ciascun aspetto monitorato.

1.1 VERIFICHE IMPIANTISTICHE

Nella seguente tabella si riporta una sintesi delle verifiche impiantistiche condotte in fase di monitoraggio con riferimento ai punti di misura a monte del sistema di trattamento:

Tabella 1: Sintesi verifiche impiantistiche in ottemperanza alla DD N.39/2019

Punto di misura	Parametro da misurare	Acquisizione del dato
	Stato di	Continua
	funzionamento	Continua
	Portata	Continua
Pozzi di emungimento (PE1,	Conducibilità elettrica	Continua
PE2)	Livello	Continua
	Temperatura	Continua
	рН	Continua
	Profondità pozzo	Semestrale
Serbatoi di accumulo	Livello	Continua

In questo trimestre di monitoraggio sono stati considerati i dati impiantistici relativi al periodo 15-31 Agosto, 1-30 Settembre, 1-31 Ottobre e 1-30 Novembre 2020, in quanto le verifiche idrochimiche condotte da Formicambiente sono state eseguite nella seconda quindicina dell'ultimo mese del trimestre (26 novembre). Quest'ultimo mese è stato considerato non solo nella prima quindicina (14 novembre) come era stato previsto nel calcolo dei trimestri a partire dalla data di avvio del TAF, ma per intero. Si ritiene utile a tal proposito nei successivi report trimestrali, mantenere la medesima suddivisione mensile.

I dati acquisiti nel corso delle attività di monitoraggio e controllo eseguito nel trimestre in oggetto sono

Redatto da: TECNOLOGIAS AMBIENT

Pagina **8** di **57**

stati elaborati e rappresentati in forma di grafici e tabelle.

In particolare sono state definite:

- Tabelle con indicate per ciascun pozzo, mensilmente, le ore di funzionamento effettive, quelle previste da progetto e il rapporto percentuale fra le due;
- Tabelle con indicati per ciascun pozzo, nel periodo di riferimento (mensile), i volumi di acqua emunti effettivi, quelli previsti da progetto e il rapporto percentuale fra le due;
- Grafici dei volumi emunti giornalmente da ciascun pozzo (Vgiornaliero/giorni)

Tabella 2: Sintesi funzionamento ore Periodo 15-31 Agosto 2020

	Periodo 15-31 Agosto 2020		
	A ore di funzionamento effettive	B ore di funzionamento previste	A/B [%]
PE1	399,25	408	97,85
PE2	399,25	408	97,85

Tabella 3: Sintesi funzionamento ore Periodo 1-30 Settembre 2020

	Periodo 1-30 Settembre 2020		
	A ore di funzionamento effettive	B ore di funzionamento previste	A/B [%]
PE1	582,5	720	81
PE2	582,5	720	81

Tabella 4: Sintesi funzionamento ore Periodo 1-31 Ottobre 2020

Periodo 1-31 Ottobre 2020			
A B			
ore di funzionamento	ore di funzionamento	A/B [%]	
effettive	previste		

Redatto da: TECNOLOGIA E AMBIENTE

Pagina **9** di **57**

PE1	614,5	744	82,5
PE2	614,5	744	82,5

Tabella 5: Sintesi funzionamento ore Periodo 1-31 Ottobre 2020

	Periodo 1-30 Novembre 2020		
	A ore di funzionamento effettive	B ore di funzionamento previste	A/B [%]
PE1	600	720	83
PE2	600	720	83

Tabella 6: Sintesi volumi emunti Periodo 15-31 Agosto 2020

	Periodo 15-31 Agosto 2020		
	A volumi di acqua emunti effettivi [m³]	B volumi di acqua previsti [m³]	A/B [%]
PE1	3593,25	3672	97,9
PE2	3593,25	3672	97,9

Tabella 7: Sintesi volumi emunti Periodo 1-30 Settembre 2020

	Periodo 1-30 Settembre 2020		
	A volumi di acqua emunti effettivi [m³]	B volumi di acqua previsti [m³]	A/B [%]
PE1	5242,5	6480	81

Redatto da: TECNOLOGIA SAMBIENTE

Pagina **10** di **57**

PE2	5242,5	6480	81
-----	--------	------	----

Tabella 8: Sintesi volumi emunti Periodo 1-31 Ottobre 2020

	Periodo	Periodo 1-31 Ottobre 2020							
	A volumi di acqua emunti effettivi [m³]	B volumi di acqua previsti [m³]	A/B [%]						
PE1	5530,5	6696	82,6						
PE2	5530,5	6696	82,6						

Tabella 9: Sintesi volumi emunti Periodo 1-30 Novembre 2020

	Periodo 1-30 Novembre 2020							
	A volumi di acqua emunti effettivi [m³]	B volumi di acqua previsti [m³]	A/B [%]					
PE1	5400	6480	83					
PE2	5400	6480	83					

Redatto da: TECNOLOGIA A AMBIENTE

Pagina **11** di **57**

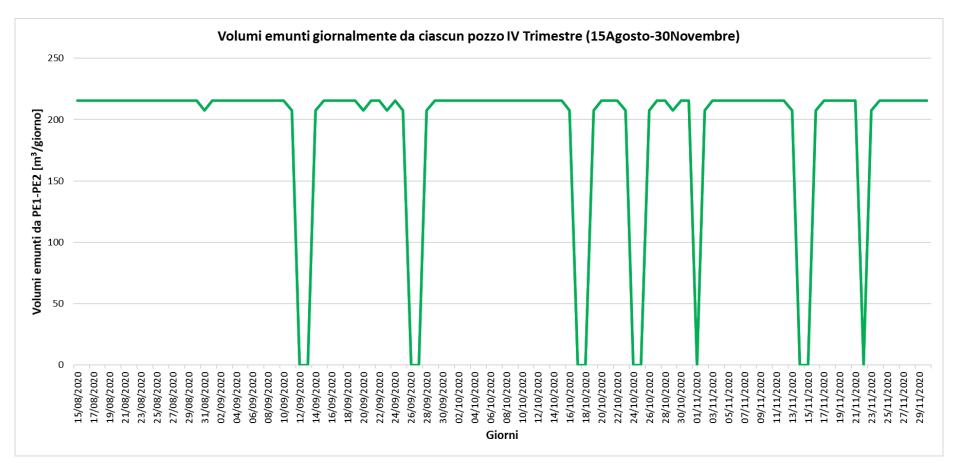


Figura 1: Volumi emunti giornalmente da ciascun pozzo (Vgiornaliero/giorni); in questo grafico è stato tenuto conto delle interruzioni TAF dovute mancanza di energia elettrica

R5

Report di monitoraggio trimestrale TAF (Settembre-Novembre'20) secondo progetto di MISO approvato con D.D. n.39 del 22/02/2019

Pagina **12** di **57**

Nel quarto trimestre di trattamento sono stati effettuati dei fermi impianto in corrispondenza delle seguenti date:

- 31/08/2020 è stata eseguita una manutenzione ordinaria del TAF che ha comportato un fermo impianto di circa 8 ore.
- 20/09/2020 è stata eseguita la sostituzione dei filtri a carboni attivi che ha comportato un fermo impianto di circa 8 ore.
- 23/09/2020 è stata eseguita la riparazione perdite piping che ha comportato un fermo impianto di circa 8 ore.
- 29/10/2020 è stata eseguita la calibrazione delle sonde che ha comportato un fermo impianto di circa 8 ore.
- Il periodo di monitoraggio considerato, 15 Agosto-30 Novembre 2020, è stato caratterizzato da continui fermi impianto dovuti all'interruzione di corrente elettrica, verificatasi soprattutto di notte e dal venerdì post attività lavorativa (circa le 16.00) al lunedì mattina (circa le 7.00). Per tale motivo sono state considerate circa 120 ore di fermo per ciascun mese monitorato (settembre, ottobre e novembre) ad eccezione dell'ultima quindicina di agosto.

Inoltre in data 25/01/2021 è stata smontata la sonda dal pozzo di emungimento PE1 per malfunzionamento dei sensori installati. Negli **Allegati 1**, **2 e 3** si riportano rispettivamente i rapporti di intervento del fermo impianto del 31/08/2020, delle operazioni eseguite sulle sonde multiparametrica in data 29/10/2020 ed infine dell'intervento di disinstallazione della sonda in PE1 con riferimento al 25/01/2021.

Ogni giorno le pompe si fermano per circa 3 min per lavaggio automatico filtri, pertanto le ore di funzionamento complessivo giornaliero per ciascuna pompa è di **23,95 h**.

Nel terzo trimestre considerato (15 agosto-30 novembre) si riscontrano **2196,25 h** totali di funzionamento.

Analogamente, i volumi emunti in questo terzo trimestre monitorato sono risultati strettamente connesse alle ore di funzionamento delle pompe PE1 e PE2. Pertanto i volumi totali emunti nel secondo trimestre sono stati **19766,25 m**³ da ciascun pozzo.

I dati relativi alle verifiche impiantistiche vengono consultati direttamente dal quadro sinottico dell'impianto, il cui accesso in remoto, è consentito solo previa autorizzazione del gestore dell'impianto Formicambiente.

Per quanto attiene l'efficacia del sistema di trattamento del TAF, nelle seguenti tabelle si riportano i valori monitorati in ingresso ed in uscita: tutti i valori rilevati in uscita dall'impianto e reimmessi in falda nei punti PR1 e PR2 sono inferiori ai limiti di rilevabilità. **Le concentrazioni di 1,2 DCP in**

Redatto da: TECNOLOGIA SAMBIENTE

Pagina **13** di **57**

<u>questo trimestre, sono risultati sempre inferiori alla CSC. Si evidenzia l'efficacia del sistema di trattamento implementato.</u>

Tabella 10: Sintesi risultati 1,1DCE nel trimestre monitorato (CSC 0,05 μg/l)

DATA DI CAMPIONAMENTO	UdM	PE1	PE2	SCARICO TAF
23/09/2020	μg/l	0,381	0,044	<0,005
26/10/2020	μg/l	0,422	0,062	<0,005
26/11/2020	μg/l	0,185	1,972	<0,005

Tabella 11: Sintesi risultati 1,2 DCP nel trimestre monitorato (CSC 0,15 μg/l)

DATA DI CAMPIONAMENTO	UdM	PE1	PE2	SCARICO TAF
23/09/2020	μg/l	0,02	<0,01	<0,01
26/10/2020	μg/l	0,048	0,03	<0,01
26/11/2020	μg/l	0,042	0,105	<0,01

N.B. Lo "SCARICO TAF" è il punto di monitoraggio posto immediatamente a valle dell'impianto TAF e prima dei pozzi di reimmissione PR1 e PR2.

Redatto da: TECNOLOGIA AMBIENTE

R5

Report di monitoraggio trimestrale TAF (Settembre-Novembre'20) secondo progetto di MISO approvato con D.D. n.39 del 22/02/2019

Pagina **14** di **57**

1.2 VERIFICHE IDROGEOLOGICHE

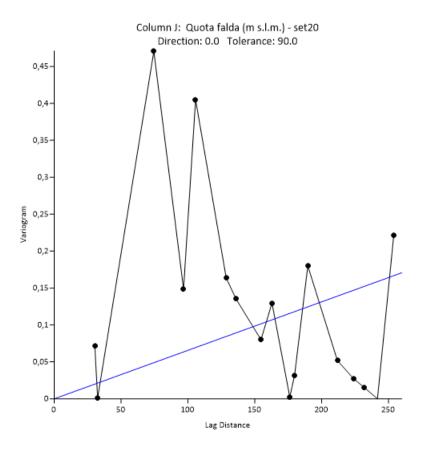
Nel presente paragrafo si riportano i riepilogativi del quarto trimestre di monitoraggio (Settembre - Novembre 2020) dei livelli freatimetrici della rete ovvero ad 1 anno dall'avvio del TAF. Il PMeC (punto 4.4.5 PMeC AIA) prevede un monitoraggio mensile.

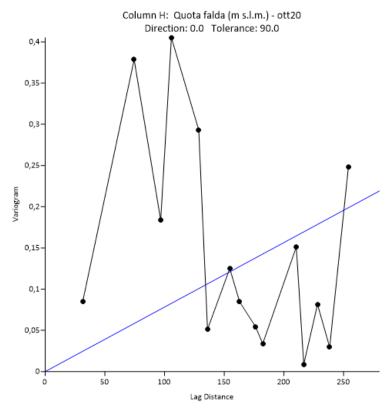
I dati acquisiti relativi ai carichi della falda monitorati da settembre a novembre 2020 sono stati elaborati e rappresentati mediante:

- mappe freatimetriche e mappe dei gradienti idraulici;
- mappa della superficie piezometrica con individuazione della zona di cattura.

1.2.1 Mappe freatimetriche e dei gradienti idraulici

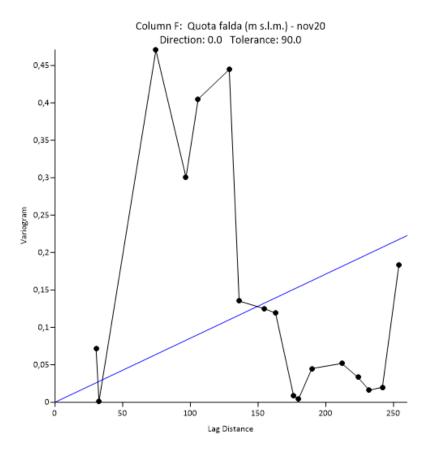
I dati freatimetrici rilevati mensilmente, da settembre a novembre 2020, in corrispondenza dei piezometri P4, P4A, P5A, P8, P10, V1, V2 e dei pozzi PE1, PE2, PR1, PR2, sono stati interpolati mediante kriging ordinario utilizzando come modello geostatistico il variogramma ottenuto da un modello "lineare".


Ai succitati pozzi si aggiungono anche quelli realizzati dalla ditta CAVED lungo il confine est del sito (A, B e C).


Di seguito si riportano i variogrammi sperimentali ottenuti per il mese di settembre, ottobre e novembre 2020. In relazione al solo mese di novembre, al fine di poter eseguire un confronto congruente tra la freatimetria e la zona di cattura teoriche in fase di progettazione (dicembre 2016) e la freatimetria e zona di cattura reali (novembre 2020), si riporta anche il varioragramma sperimentale ottenuto escludendo i nuovi pozzi CAVED (A, B e C), così come da osservazione Arpa Puglia – nota di riscontro prot. n.76028 del 03/11/2020.

Redatto da: TECNOLOGIA: AMBIENTI

Pagina **15** di **57**



Pagina **16** di **57**

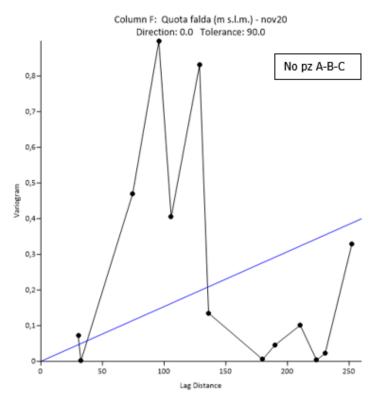


Figura 2: Variogramma sperimentale dei dati dei mesi da settembre a novembre 2020

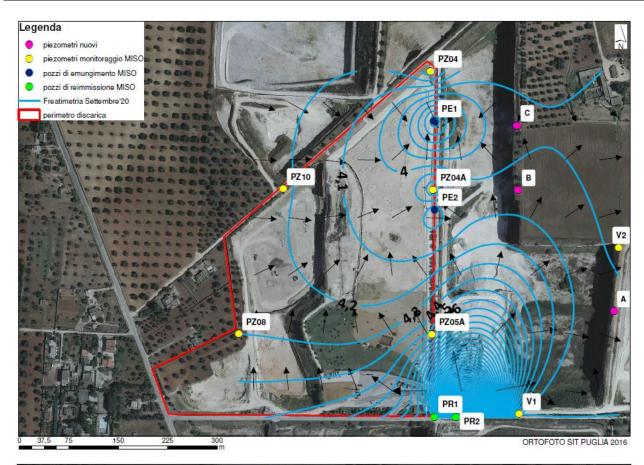
Redatto da: TECNOLOGIA AMBIENTE

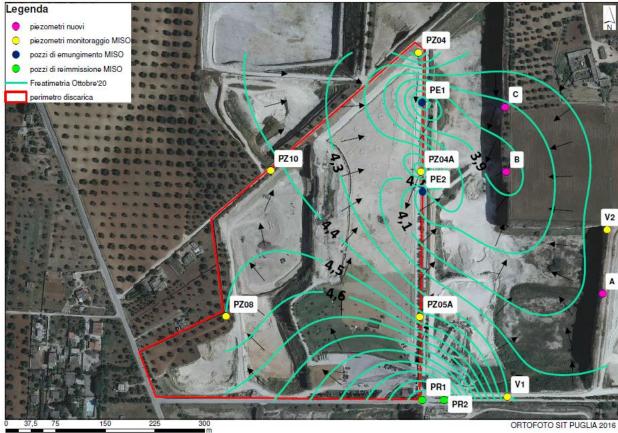
Pagina **17** di **57**

Le piezometrie ottenute per i mesi di settembre, ottobre e novembre 2020 sono di seguito riportate insieme alla tabella con indicazione dei livelli statici ed il calcolo delle quote della falda.

In rosso sono riportati i livelli statici "anomali".

Per i motivi già discussi nel precedente report (Rif. S0920_BR30_0920) in relazione al pozzo PR2, la ricostruzione del campo freatimetrico a scala di sito in tale punto è stata eseguita assumendo come quota della falda quella più prossima alle misurazioni vicine, ciò a causa della scarsa permeabilità di tale pozzo.


Tabella 12: Livelli statici e quote falda da giugno ad agosto 2020


ID PZ	x	у	Quota_pr (m s.l.m.)	L.S. da p.r. (m) nov20	Quota falda (m s.l.m.) nov20	L.S. da p.r. (m) ott20	Quota falda (m s.l.m.) ott20	L.S. da p.r. (m) set20	Quota falda (m s.l.m.) set20
P4	735264,1	4503460	48,08	43,5	4,58	43,6	4,48	43,7	4,38
P4A	735267,9	4503280	48,01	43,5	4,51	43,5	4,51	43,7	4,31
P5A	735265,9	4503060	48,73	44,3	4,43	44,3	4,43	44,2	4,53
P8	734972,7	4503061	46,2	41,7	4,5	41,7	4,5	41,9	4,3
P10	735040,6	4503281	48,62	44,2	4,42	44,2	4,42	44,4	4,22
PE1	735270	4503386	48,11	44,5	3,61	44,5	3,61	44,7	3,41
PE2	735269	4503250	48,13	44	4,13	44,2	3,93	44,2	3,93
PR1	735270,5	4502934	46,99	41,3	5,69	41,6	5,39	41,9	5,09
PR2	735303	4502934	46,94	35,8	11,14	36,5	10,44	37,7	9,24
V1	735398,6	4502939	44,9	40,6	4,3	40,6	4,3	40,8	4,1
V2	735549,9	4503192	44,38	40,1	4,28	40,2	4,18	40,4	3,98
Α	735543	4503096	43,73	39,5	4,23	39,6	4,13	39,7	4,03
В	735397	4503280	45,45	41,3	4,15	41,6	3,85	41,4	4,05
С	735395	4503378	45,58	41,5	4,08	41,6	3,98	41,6	3,98

Redatto da: TECNOLOGIA AMBIENTE

Pagina **18** di **57**

Pagina **19** di **57**

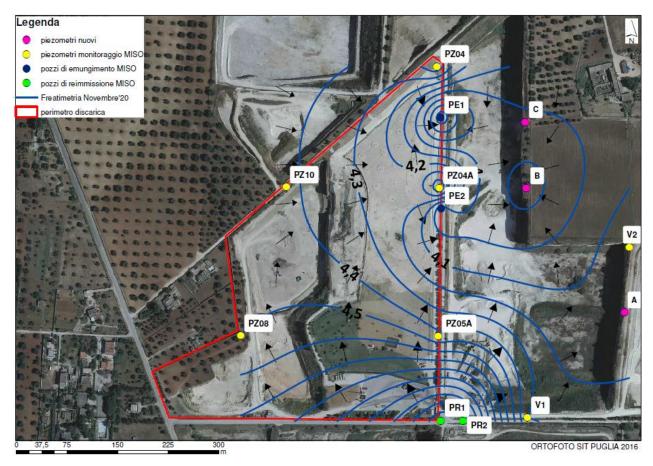


Figura 3: Freatimetrie da settembre a novembre 2020

1.2.2 Mappa della superficie piezometrica con individuazione della zona di cattura

Di seguito si riporta una mappa nella quale si possono visualizzare la freatimetria e la zona di cattura, determinate in fase di progettazione dal modello teorico a partire dai dati rilevati nel Dicembre 2016, come indicato nel par. 2.1.4 della "Relazione Tecnica MISO Formica Ambiente" di Dicembre 2018 (Figura 4).

A seguito dell'avvio della MISO, dai rilievi freatimetrici eseguiti con cadenza mensile su tutti i pozzi di monitoraggio è stato possibile ricostruire la **zona di cattura sito-specifica** a partire dai dati reali. In Figura 5 si riporta una mappa nella quale si possono visualizzare la freatimetria di Novembre 2020 e la zona di cattura "reale". In merito al metodo utilizzato per individuare **l'ampiezza massima della zona di cattura** e la **posizione del punto di stagnazione**, si è fatto riferimento alla piezometria indisturbata determinata con il modello Feflow.

La mappa con la zona di cattura "reale" la cui ampiezza è stata determinata sulla base della freatimetria di Novembre 2020 con esclusione dei pozzi A, B e C, CAVED, al fine di poter rendere confrontabili le due freatimetrie così come indicato da Arpa Puglia nella prot. n.76028 del 03/11/2020.

Redatto da: TECNOLOGIA AMBIENTE

Pagina **20** di **57**

In merito al metodo utilizzato per individuare le zone di cattura, si esplicita che le zone di cattura sono state disegnate seguendo le linee di flusso ortogonalmente alle isopieze e tenendo conto dell'ampiezza delle linee di richiamo della falda nell'intorno dei due pozzi di emungimento.

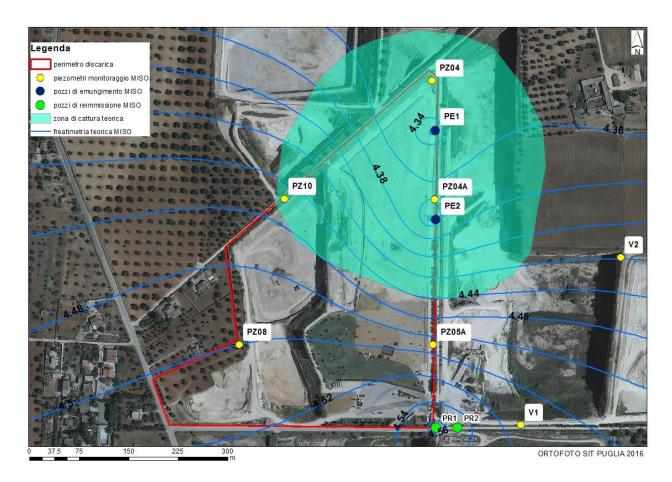


Figura 4: Freatimetria e zona di cattura teoriche (Dicembre 2016)

Pagina **21** di **57**

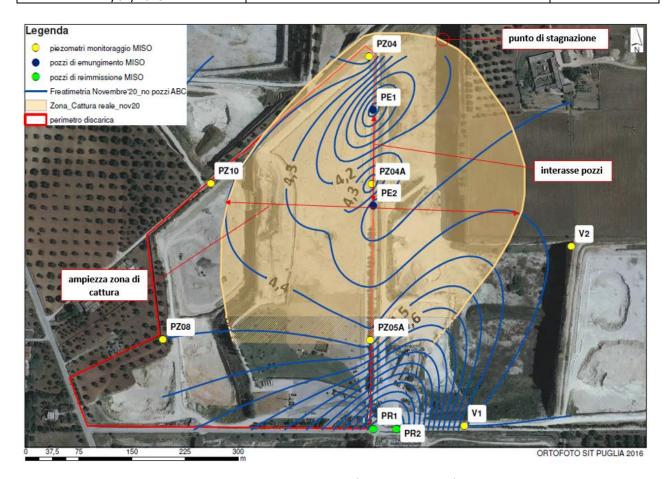


Figura 5: Freatimetria e zona di cattura Novembre 2020

Come si può osservare, nei periodi di misura differenti (dicembre 2016 e novembre 2020), le due zone di cattura risultano comparabili al netto dell'evoluzione di novembre in cui si verifica un lieve aumento del carico della falda.

Al fine di rafforzare l'emungimento delle sostanze contaminanti presenti in falda, così come sarà spiegato in dettaglio *nel documento di modifica del progetto di MISO*, si propone di incrementare l'emungimento delle acque sotterranee dal pozzo PZ5A, le cui acque saranno inviate al TAF ed una volta trattate saranno reimmesse nei pozzi di reimmissione.

Di seguito si riporta il confronto tra il carico della falda "teorico" ed il carico determinato nella campagna di agosto 2020 per i piezometri P4, P4A, P5A ed i pozzi PE1 e PE2.

Pagina **22** di **57**

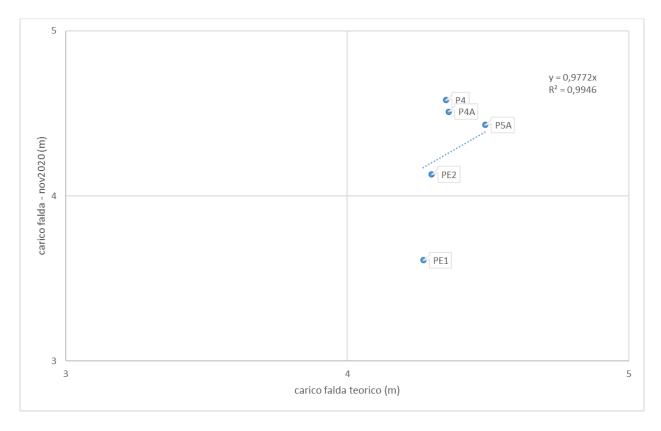


Figura 6: Confronto tra carico falda teorico (dicembre 2016) e carico falda novembre 2020

Come si può osservare, per PE2 e P5A i carichi sono prossimi a quelli teorici di dicembre 2016, con un lieve aumento per il P5A, mentre per PE1 il carico "teorico" risulta sovrastimato rispetto al carico di novembre 2020 e negli altri casi, invece, risulta sottostimato.

Si sottolinea che tale scostamento è imputabile a variazioni locali di micro-scala del campo di permeabilità, estremamente frequenti nel caso di acquiferi permeabili per fratturazione.

Considerando, i risultati delle freatimetrie globalmente, a scala di sito, i risultati rilevati confermano la validità del modello utilizzato in fase di progettazione anche tenendo conto che l'ampiezza della zona di cattura è simile tra quanto rilevato e quanto modellato.

Come richiesto da ARPA Puglia nel parere prot. n. 76028 del 03/11/2020, è stata elaborata la freatimetria di agosto 2020 senza considerare i rilievi piezometrici dei pozzi A, B, C, al fine di poter effettuare un confronto congruente con il modello ante-operam (Dicembre 2016) relativamente alle condizioni al contorno.

Pertanto, i dati freatimetrici rilevati ad agosto 2020, in corrispondenza dei piezometri P4, P4A, P5A, P8, P10, V1, V2 e dei pozzi PE1, PE2, PR1, PR2, sono stati interpolati mediante kriging ordinario utilizzando come modello geostatistico il variogramma ottenuto da un modello "lineare".

Pagina **23** di **57**

Di seguito si riporta il variogramma sperimentale ottenuto per il mese di agosto 2020.

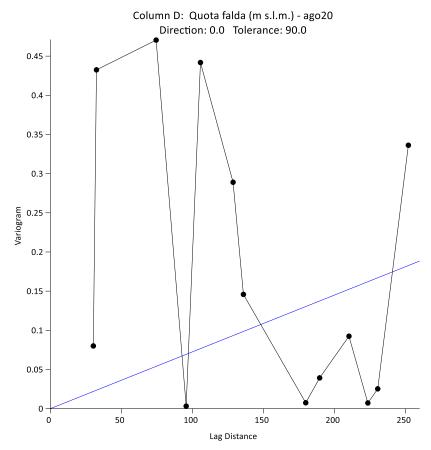


Figura 7: Variogramma sperimentale agosto 2020 (no pozzi A, B, C)

La piezometria ottenuta per il mese di agosto 2020, a partire dal variogramma sperimentale nella **Errore. L'origine riferimento non è stata trovata.**, è di seguito riportata insieme alla tabella c on indicazione dei livelli statici ed il calcolo delle guote della falda.

Tabella 13:Livelli statici e quote falda agosto 2020

ID PZ	x (m)	y (m)	Quota_pr (m s.l.m.)	L.S. da p.r. (m) - ago20	Quota falda (m s.l.m.) - ago20
P4	735264.1	4503460	48.08	43.7	4.38
P4A	735267.9	4503280	48.01	43.66	4.35
P5A	735265.9	4503060	48.73	44.5	4.23
Р8	734972.7	4503061	46.2	41.82	4.38
P10	735040.6	4503281	48.62	44.39	4.23
PE1	735270	4503386	48.11	44.7	3.41
PE2	735269	4503250	48.13	44.18	3.95
PR1	735270.5	4502934	46.99	41.92	5.07

Redatto da: TECNOLOGIAE AMBIENTE

Pagina **24** di **57**

ID PZ	x (m)	y (m)	Quota_pr (m s.l.m.)	L.S. da p.r. (m) - ago20	Quota falda (m s.l.m.) - ago20
PR2	735303	4502934	46.94	37.8	9.14
V1	735398.6	4502939	44.9	40.84	4.06
V2	735549.9	4503192	44.38	40.4	3.98

Figura 8: Freatimetrie agosto 2020 (no pozzi A, B, C)

Di seguito si riporta una mappa nella quale si possono visualizzare la freatimetria e la zona di cattura, determinate in fase di progettazione dal modello teorico a partire dai dati rilevati nel Dicembre 2016, come indicato nel par. 2.1.4 della "Relazione Tecnica MISO Formica Ambiente" di Dicembre 2018 (Figura 9).

A seguire si riporta la mappa con <u>la zona di cattura "reale" la cui ampiezza è stata determinata sulla</u> <u>base della freatimetria di Agosto 2020 senza considerare il contributo dei pozzi A, B, C, come richiesto da ARPA Puglia nel parere prot. n. 76028 del 03/11/2020 (Figura 10).</u>

Pagina **25** di **57**

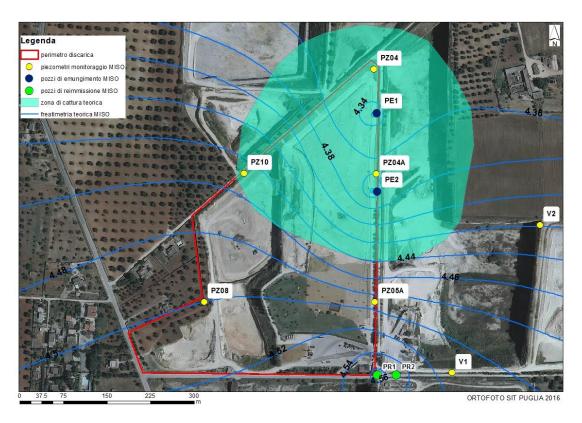


Figura 9: Freatimetria e zona di cattura teoriche (Dicembre 2016)

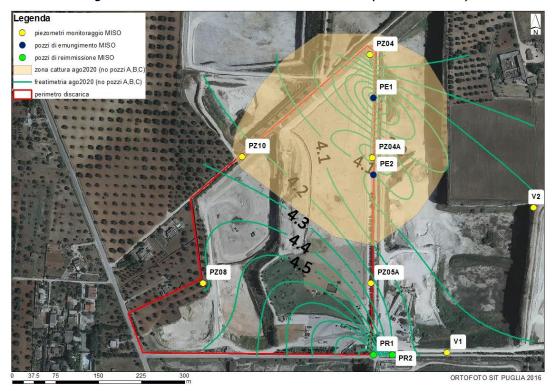


Figura 10: Freatimetria e zona di cattura Agosto 2020 (no pozzi A, B, C)

Redatto da: TECNOLOGIAE AMBIENTE

Pagina **26** di **57**

Come si può osservare, pur facendo riferimento a due periodi di misura differenti (dicembre e agosto), le due zone di cattura sono comparabili.

Di seguito si riporta il confronto tra il carico della falda "teorico" ed il carico determinato nella campagna di agosto 2020 per i piezometri P4, P4A, P5A ed i pozzi PE1 e PE2.

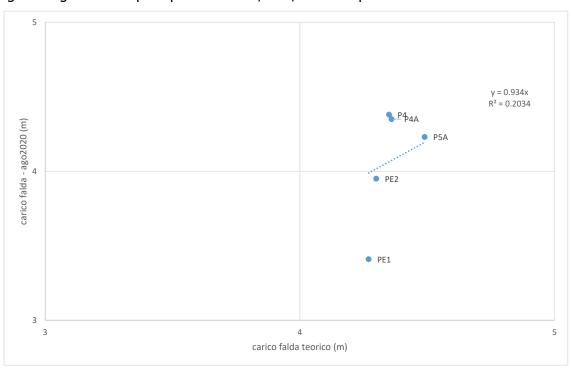


Figura 11: Confronto tra carico falda teorico (dicembre 2016) e carico falda agosto 2020 L'elaborazione del suddetto grafico non tiene conto dei carichi piezometrici relativi ai pozzi A, B,C ma solo dei pozzi P4, P4A, P5A, PE1, PE2.

1.3 VERIFICHE IDROCHIMICHE

Come previsto dalla DD n.39/2019, i dati acquisiti nel corso delle attività di monitoraggio e controllo sono stati elaborati e rappresentati in forma di tabelle e mappe. In particolare, per ciascun contaminante di interesse, di seguito si riportano:

- tabella con elaborazioni statistiche delle concentrazioni di 1,1 DCE e 1,2 DCP;
- trend di concentrazione dell'1,1 DCE per i piezometri a valle della barriera;
- mappa delle concentrazioni di 1,1 DCE e 1,2 DCP;
- diagrammi della massa di contaminante rimossa nel tempo.

Pagina **27** di **57**

1.3.1 Elaborazioni statistiche

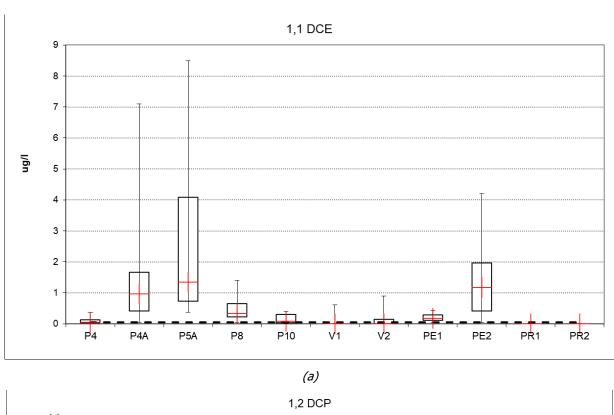
Il presente paragrafo contiene le elaborazioni statistiche delle concentrazioni di 1,1 DCE e 1,2 DCP rilevate dal novembre 2016 al novembre 2020 per i piezometri P4, P4A, P5A, P8 e P10, dal dicembre 2017 al novembre 2020 per V1 e V2 mentre per i pozzi PE1, PE2, PR1 E PR2 dal novembre 2019 al novembre 2020.

Si specifica che, poiché l'avvio dell'impianto TAF è avvenuto nel Novembre 2019, le elaborazioni contemplano anche i dati precedenti all'inizio delle attività di MISO.

Di seguito si riportano le tabelle con le elaborazioni statistiche effettuate (media aritmetica, mediana, percentili, deviazione standard) ed i diagrammi (*Box & Whisker*) per 1,1 DCE e 1,2 DCP.

Tabella 14:Elaborazioni statistiche dati di monitoraggio 1,1DCE

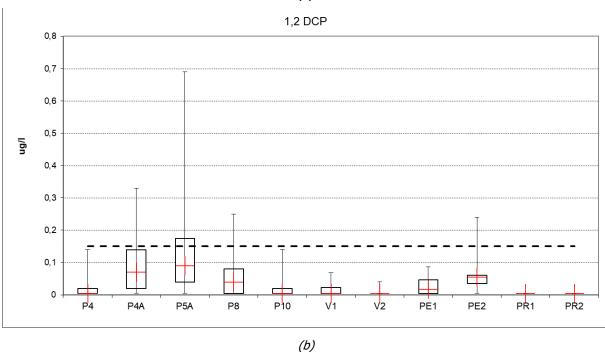
POZZI	min	Max	Media	Mediana	dev. Std	LQ (25%)	UQ (75%)
P4	0	0,38	0,094	0,047	0,11	0,0265	0,125
P4A	0,037	7,1	1,361	0,97	1,48	0,41	1,66
P5A	0,37	8,5	2,698	1,34	2,61	0,73775	4,085
P8	0,034	1,41	0,432	0,34	0,28	0,23	0,65
P10	0,0025	0,41	0,141	0,086	0,13	0,037	0,31
V1	0,0025	0,61	0,021	0,0025	0,10	0,0025	0,0025
V2	0,0025	0,89	0,142	0,0025	0,26	0,0025	0,15
PE1	0,048	0,431	0,209	0,1805	0,13	0,108	0,28825
PE2	0,044	4,21	1,486	1,174	1,32	0,40975	1,966
PR1	0,0025	0,0025	0,003	0,0025	0,00	0,0025	0,0025
PR2	0,0025	0,0025	0,003	0,0025	0,00	0,0025	0,0025

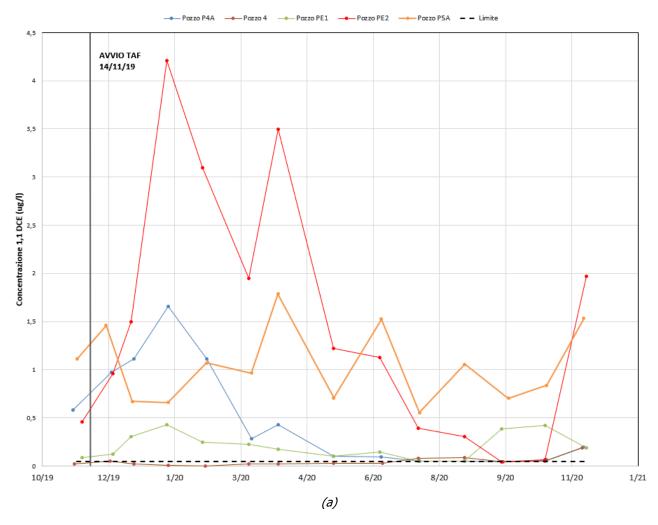

Tabella 15: Elaborazioni statistiche dati di monitoraggio 1,2DCP

POZZI	min	Max	Media	Mediana	dev. Std	LQ (25%)	UQ (75%)
P4	0,005	0,14	0,025	0,005	0,038	0,005	0,02
P4A	0,005	0,33	0,105	0,07	0,097	0,02	0,14
P5A	0,005	0,69	0,154	0,09	0,168	0,04	0,175
P8	0,005	0,25	0,061	0,04	0,070	0,005	0,08
P10	0,005	0,14	0,028	0,005	0,041	0,005	0,02
V1	0,005	0,068	0,016	0,005	0,017	0,005	0,02275
V2	0,005	0,04	0,009	0,005	0,009	0,005	0,005
PE1	0,005	0,086	0,029	0,0175	0,029	0,005	0,0465
PE2	0,005	0,24	0,070	0,0555	0,065	0,03475	0,06
PR1	0,005	0,005	0,005	0,005	0,000	0,005	0,005
PR2	0,005	0,005	0,005	0,005	0,000	0,005	0,005

Redatto da: TECNOLOGIA AMBIENT

Pagina **28** di **57**




Figura 12: Box & Whisker per 1,1 DCE (a) e per 1,2 DCP (b) con indicazione della CSC (linea tratteggiata)

Come si può osservare dai diagrammi, le concentrazioni di entrambi i composti sono più elevate nei piezometri P4A, P5A e PE2 sia nella mediana sia nei valori estremi positivi (valori massimi). La mediana delle concentrazioni di 1,1 DCE sono superiori alla CSC in P4A, P5A, P8, P10, PE1 e PE2 $(0,05 \mu g/l)$ mentre assenti sono i superamenti per 1,2 DCP $(0,15 \mu g/l)$.

Pagina **29** di **57**

Nei grafici seguenti si riporta l'andamento temporale delle concentrazioni di 1,1 DCE e 1,2 DCP nei pozzi lungo il lato barriera.

Pagina **30** di **57**

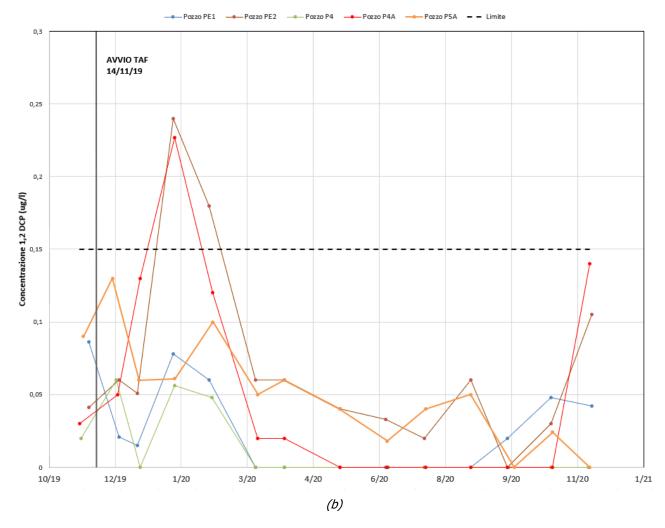
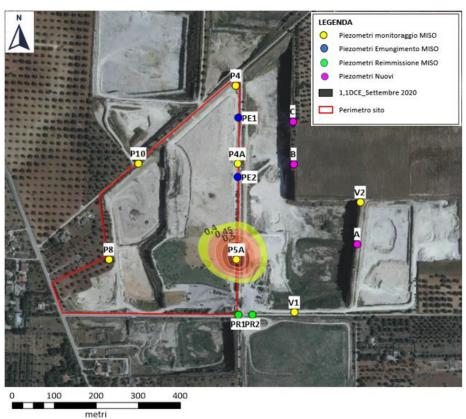
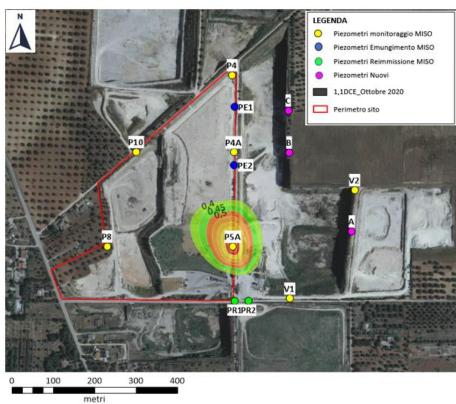


Figura 13: Andamento temporale dei valori di 1,1 DCE (a) e 1,2 DCP (b) con indicazione della CSC (linea tratteggiata)

In merito all'andamento temporale della concentrazione di 1,1 DCE si osserva un decremento dei valori in PE1 e P4A. In P4 si verifica un lieve incremento, mentre in particolare nel mese di novembre 2020 in PE2 e P5A la concentrazione di 1,1 DCE risulta superiore alla CSC. Nel mese di ottobre le concentrazioni in P4 ed in PE2 sono NON conformi rispetto ai limiti applicabili, secondo le definizioni delle Linee Guida ISPRA 52/2009.

In **Allegato 4** si riportano i rapporti di prova delle analisi condotte.


1.3.2 Trend di concentrazione


Al fine di verificare eventuali trend di aumento o diminuzione della concentrazione dell'1,1 DCE, sono stati elaborati i dati rilevati nel mese di settembre, ottobre e novembre 2020 mediante interpolazione

Pagina **31** di **57**

con il metodo *Natural Neighbor*. Tale metodo è risultato il più idoneo al fine di ridurre gli scarti tra quanto stimato mediante il metodo ed i dati reali.

Redatto da: TECNOLOGIA E AMBIENTE

Pagina **32** di **57**

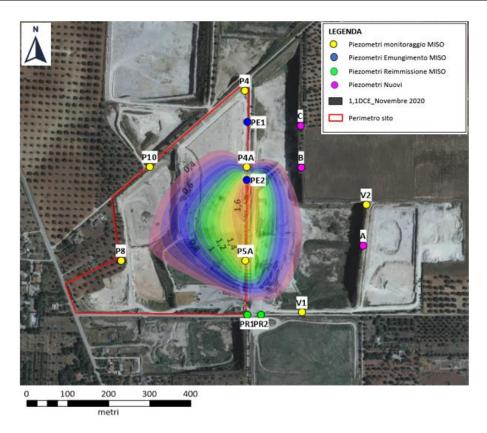


Figura 14: Mappa di distribuzione delle concentrazioni di 1,1 DCE del mese di settembre, ottobre, novembre 2020

Come si può osservare, nei mesi di Settembre e Ottobre il plume di contaminazione è localizzato nei pressi del P5A in quanto nel PE2 le concentrazioni di 1,1DCE appaiono ridotte. Nel mese di Novembre invece, si verifica un aumento delle concentrazioni sia nel PE2 e sia PZ4A. Nel PZ5A la concentrazione aumenta progressivamente attestandosi sul valore di 1,53 μ g/L.

Tale fenomeno viene evidenziato anche dal seguente grafico che rappresenta la variazione delle concentrazioni di 1,1 DCE nei piezometri lato barriera in funzione della distanza tra di essi. I valori del P5 sono relativi soltanto al mese di giugno 2020 (inferiori al limite di rilevabilità) in quanto tale pozzo non fa parte della rete di monitoraggio delle MISO.

Pagina **33** di **57**

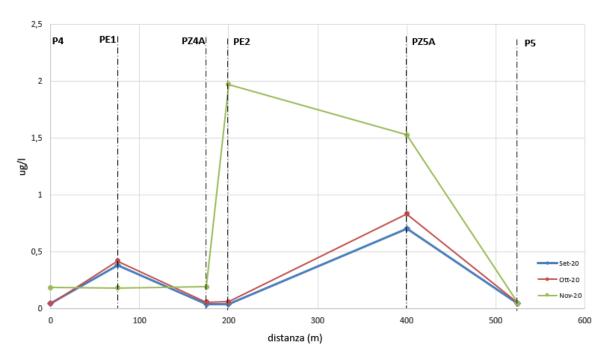
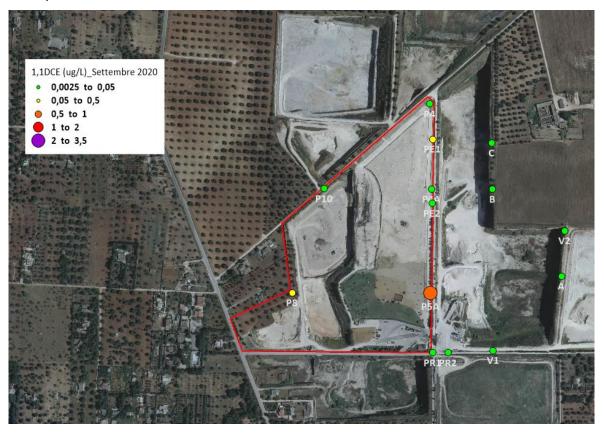
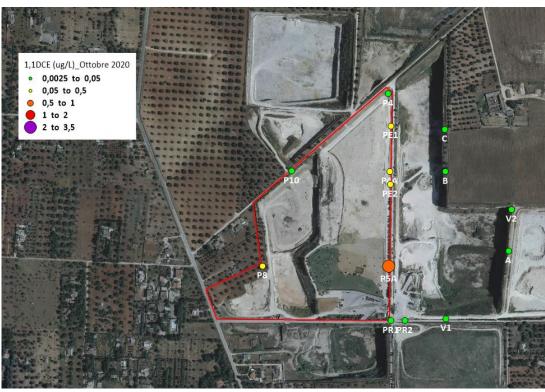



Figura 15: Grafico delle concentrazioni nei piezometri lato barriera

1.3.3 Mappe concentrazioni

Di seguito si riportano la distribuzione delle concentrazioni di 1,1 DCE e 1,2 DCP nei mesi di settembre, ottobre e novembre 2020.



Redatto da: TECNOLOGIA E AMBIENTE

Pagina **34** di **57**

(a)

(b)

Figura 16: Mappa di distribuzione delle concentrazioni di 1,1 DCE nel mese di settembre 2020 (a), ottobre 2020 (b), novembre 2020 (c)

(c)

Redatto da: TECNOLOGIA SAMBIENTE

Pagina **35** di **57**

(a)

Pagina **36** di **57**

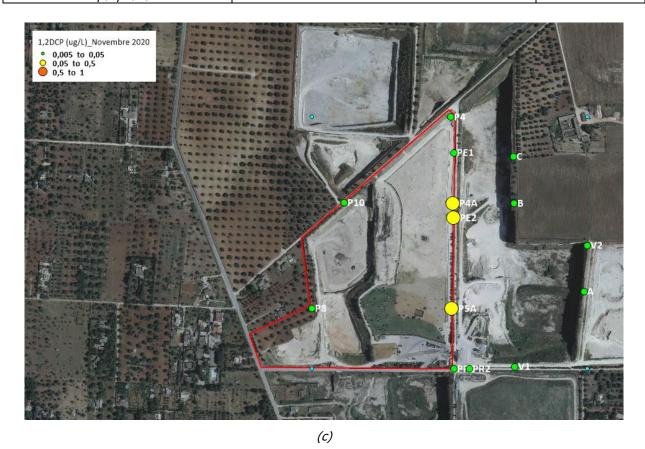


Figura 17: Mappa di distribuzione delle concentrazioni di 1,2 DCP nel mese di settembre 2020 (a), ottobre 2020 (b), novembre 2020 (c)

Come si può osservare, le concentrazioni di 1,1DCE nei piezometri PZ4A, PE2 e PZ5A, aumentano progressivamente nei tre mesi di monitoraggio (settembre, ottobre, novembre). Nel mese di ottobre le concentrazioni in P4A e PE2 sono NON conformi rispetto ai limiti applicabili, secondo le definizioni delle Linee Guida ISPRA 52/2009, mentre nel mese di settembre 2020 le concentrazioni rilevate in P4A e PE2 risultano inferiori alla CSC.

Come già introdotto nel paragrafo precedente, al fine di poter intercettare con efficacia le sostanze contaminanti in falda, così come spiegato in dettaglio nel documento di modifica del progetto di MISO, sarà elaborata una variante al progetto di MISO in modo da effettuare un ulteriore emungimento delle acque sotterranee dal pozzo PZ5A, le cui acque saranno inviate al TAF ed una volta trattate saranno reimmesse nei pozzi di reimmissione.

Negli ultimi due trimestri di monitoraggio <u>le concentrazioni di 1,2 DCP sono sempre inferiori alla CSC</u>, **dimostrando pertanto l'efficacia del sistema di trattamento implementato**.

Pagina **37** di **57**

1.3.4 Monitoraggio parametri chimico-fisici

Il monitoraggio del TAF prevede inoltre un controllo in continuo dei parametri chimico-fisici quali temperatura, pH, conducibilità, potenziale redox e ossigeno disciolto, mediante sonde multiparametriche installate nei pozzi di emungimento PE1 e PE2. Il download dei parametri chimico-fisici viene effettuato mediante accesso alla piattaforma dati dal sito www.geoves.it, inserendo le credenziali fornite dal gestore della stessa piattaforma.

In relazione al periodo 15/08/2020 – 31/08/2020 i dati relativi ai parametri monitorati dalla sonda in PE2 (T, U, pH, Conducibilità, Redox) potrebbero risentire di problemi di calibrazione dovuti al rimontaggio e calibrazione di suddetta sonda avvenuto in data 13/08/2020.

Di seguito si riportano gli andamenti riscontrati nel trimestre in esame.

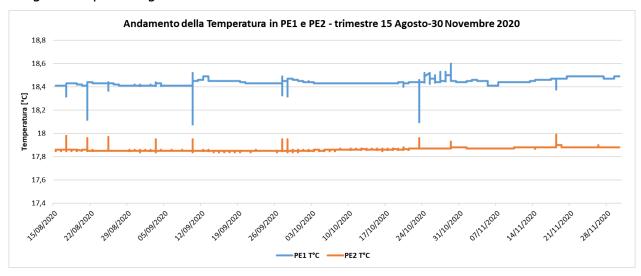


Figura 18: Andamento della Temperatura nei pozzi PE1 e PE2 (15/08-30/11/2020)

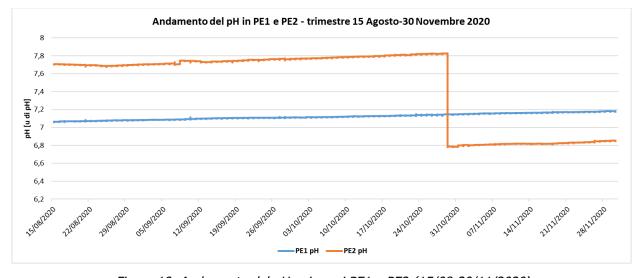


Figura 19: Andamento del pH nei pozzi PE1 e PE2 (15/08-30/11/2020)

Redatto da: TECNOLOGIAS AMBIENTE

Pagina **38** di **57**

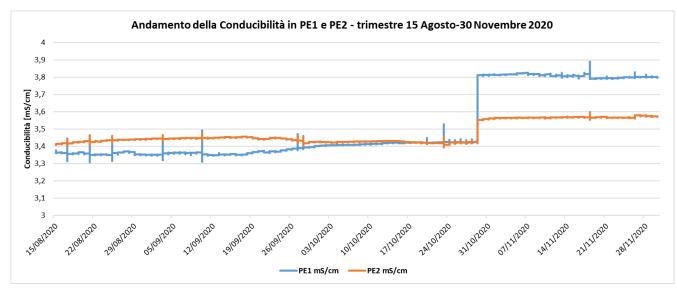


Figura 20: Andamento della Conducibilità nei pozzi PE1 e PE2 (15/08-30/11/2020)

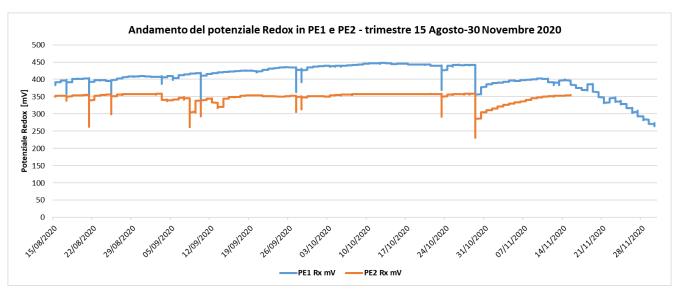


Figura 21: Andamento del Potenziale Redox nei pozzi PE1 e PE2 (15/08-30/11/2020)

R5
Report di monitoraggio trimestrale
TAF (Settembre-Novembre'20)
secondo progetto di MISO
approvato con D.D. n.39 del
22/02/2019

Pagina **39** di **57**

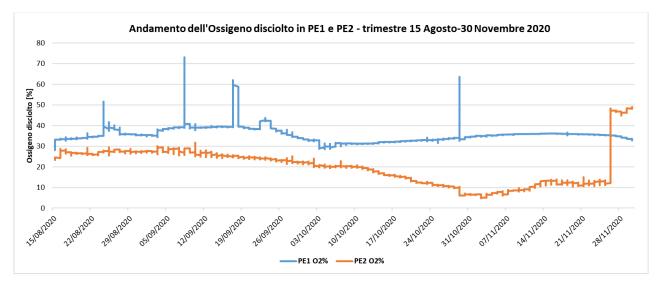


Figura 22: Andamento della percentuale di ossigeno disciolto nei pozzi PE1 e PE2 (15/08-30/11/2020)

1.3.5 Diagrammi massa rimossa/tempo

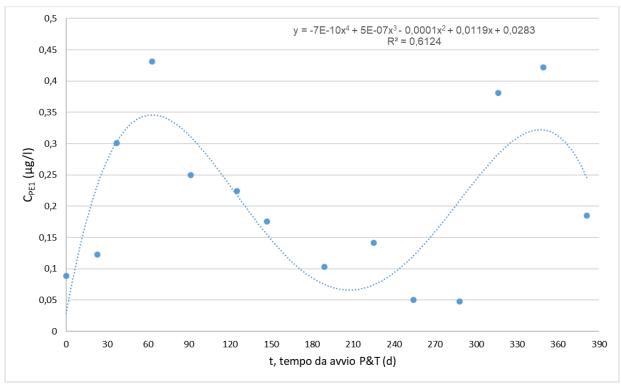
Un sistema di P&T si dimostra efficace se è in grado di catturare o almeno di rallentare la migrazione del plume di inquinante: la massa di contaminante rimossa nel tempo T dal sistema di pompaggio è definita dalla sequente equazione:

$$M(T) = \int_{0}^{T} C_{p}(t) \cdot Q_{p}(t) dt$$

Dove:

 $C_p(t)$: concentrazione rilevata nei pozzi di pompaggio nel tempo

 $Q_p(t)$: portata emunta dai pozzi di pompaggio nel tempo


Nel caso in esame, il pompaggio è realizzato nei pozzi PE1 e PE2, e pertanto la massa complessiva rimossa nel tempo è pari a:

$$M(T) = M_{PE1} + M_{PE2} = \int_0^T C_{PE1}(t) \cdot Q_{PE1}(t) dt + \int_0^T C_{PE2}(t) \cdot Q_{PE2}(t) dt$$

Nei seguenti grafici sono mostrate le concentrazioni rilevate nei pozzi PE1 e PE2 dall'avvio del sistema P&T, per il 1,1DCE e per il 1,2 DCP.

Pagina **40** di **57**

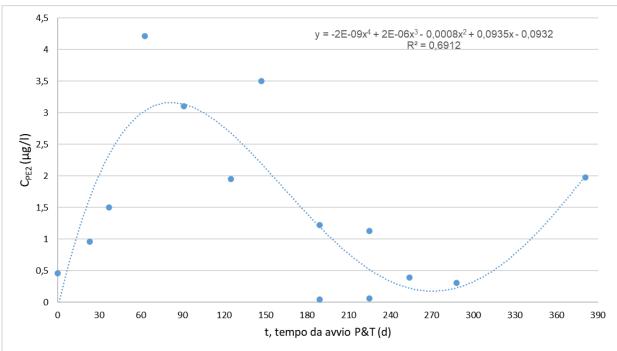


Figura 23: concentrazioni di 1,1DCE rilevate nei pozzi PE1 e PE2 dall'avvio del sistema P&T

Pagina **41** di **57**

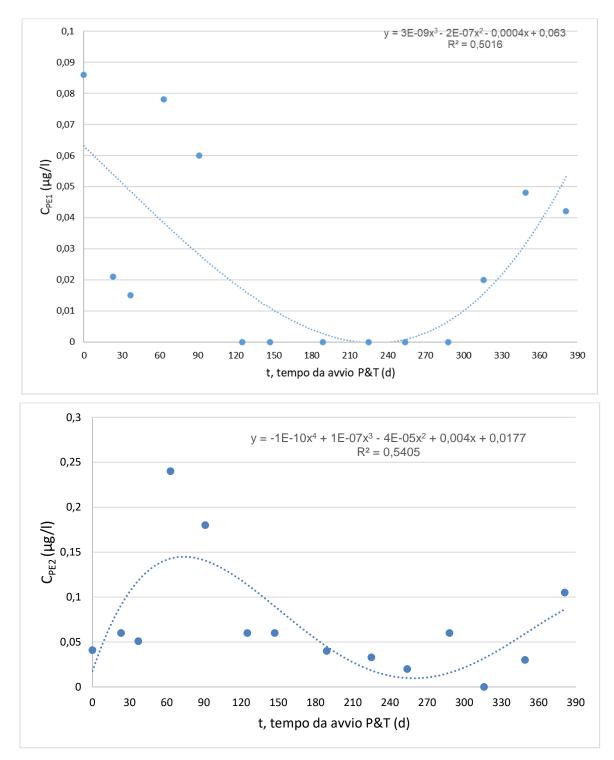


Figura 24: concentrazioni di 1,2DCP rilevate nei pozzi PE1 e PE2 dall'avvio del sistema P&T

Nelle figure sono anche riportate le equazioni di regressione polinomiale per ottenere delle tipologie di funzioni $C_{PE1}(t)$ e $C_{PE2}(t)$ facilmente integrabili.

Report di monitoraggio trimestrale TAF (Settembre-Novembre'20) secondo progetto di MISO approvato con D.D. n.39 del 22/02/2019

Pagina **42** di **57**

Considerando che dall'analisi dei dati delle portate di emungimento $Q_{PE1}(t)$ e $Q_{PE2}(t)$ non vi sono significative variazioni temporali nel corso del periodo di monitoraggio, è corretto assumere tali valori costanti:

Pertanto, la massa rimossa dal sistema di P&T dopo 288 giorni è pari a:

$$\begin{split} M_{DCE}(288) &= M_{PE1,DCE}(288) + M_{PE2,DCE}(288) = Q(\int_{0}^{288} C_{PE1,DCE}(t)dt + \int_{0}^{288} C_{PE2,DCE}(t)dt) = \\ &\qquad \qquad Q * (I_{PE1,DCE} + I_{PE2,DCE}) \\ M_{DCP}(288) &= M_{PE1,DCP}(288) + M_{PE2,DCP}(288) = Q(\int_{0}^{288} C_{PE1,DCP}(t)dt + \int_{0}^{288} C_{PE2;DCP}(t)dt) = \\ &\qquad \qquad Q * (I_{PE1,DCP} + I_{PE2,DCP}) \end{split}$$

L'integrazione analitica degli integrali, eseguita utilizzando le interpolazioni polinomiali, restituisce i sequenti valori:

$$I_{PE1,DCE} = 49,28 \frac{\mu g}{L} \cdot d$$

$$I_{PE2,DCE} = 671,80 \frac{\mu g}{L} \cdot d$$

$$I_{PE1,DCP} = 8,72 \frac{\mu g}{L} \cdot d$$

$$I_{PE2,DCP} = 44,44 \frac{\mu g}{L} \cdot d$$

$$M_{DCE}(381) = 216 \left[\frac{m^3}{d} \right] (540,94 + 602,40) \left[\frac{mg}{m^3} \cdot d \right] = 246961,44 \, mg$$

$$M_{DCP}(381) = 216 \left[\frac{m^3}{d} \right] (7,09 + 74,126) \left[\frac{mg}{m^3} \cdot d \right] = 17542,12 \, mg$$

Dopo 381 giorni di pompaggio sono stati estratti quasi **247 g** di 1,1 DCE (i dati cumulati del primo, secondo e terzo trimestre sono rispettivamente 60 g, 80 g e 156 g) e quasi **18 g** di 1,2DCP (i dati cumulati del primo, secondo e terzo trimestre sono rispettivamente 4 g, 6 g e 11,48 g).

1.3.6 Monitoraggio ARPA in corso d'opera

Come previsto dalla DD n.39/2019, ARPA Puglia nel mese di Novembre 2020 ha condotto un monitoraggio in corso d'opera della MISO, i cui risultati sono stati trasmessi con nota prot. n. 1881 del 13/01/2021 ed i certificati analitici sono riportati in **Allegato 5** al presente documento.

Di seguito si riporta una tabella riepilogativa dei risultati ottenuti da Formica e da ARPA nel mese di novembre 2020.

22/02/2019

Pagina **43** di **57**

Tabella 16:Confronto dati ARPA e dati Formica per 1,1 DCE (a) e 1,2 DCP (b) (novembre 2020)

ID PZ	1,1 DCE nov2020 (ug/l)	1,1 DCE nov2020 ARPA (ug/l)	Limite Tab.2 D.Lgs. N.152/06 (ug/l)
P4	0.19	0.18	
P4A	0.195	0.16	
P5A	1.53	2.3	
P8	0.275	0.18	
P10	0.035	<0.01	
PE1	0.185	0.16	0.05
PE2	1.972	1.830	0.05
V1	<0.005	<0.01	
V2	<0.005	<0.01	
PR1	<0.005	<0.01	
PR2	<0.005	<0.01	
SCARICO TAF	<0.005	<0.01	

(a)

ID PZ	1,2 DCP nov2020 (ug/l)	1,2 DCP nov2020 ARPA (ug/l)	Limite Tab.2 D.Lgs. N.152/06 (ug/l)
P4	<0.01	<0.08	
P4A	0.14	<0.08	
P5A	<0.01	<0.08	
P8	<0.01	<0.08	
P10	<0.01	<0.08	
PE1	0.042	<0.08	
PE2	0.105	0.14	0.15
V1	<0.01	<0.08	
V2	<0.01	<0.08	
PR1	<0.01	<0.08	
PR2	<0.01	<0.08	
SCARICO TAF	<0.01	<0.08	

(b)

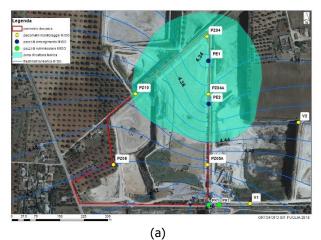
Come si può osservare, i risultati rilevati da Formica nello stesso mese di monitoraggio hanno mostrato piena corrispondenza con i valori ARPA.

Redatto da: TECNOLOGIA A AMBIENTE

Pagina **44** di **57**

1.4 PIEZOMETRI DI CONTROLLO AL POC

Nel parere ARPA di aprile 2020 si richiedeva di identificare univocamente i POC a valle idrogeologica e <u>non influenzata dall'esercizio della barriera</u>, per monitorare l'effettivo raggiungimento dell'obiettivo in termini di conformità delle CSC.


Come per i due precedenti trimestri Marzo - Maggio e Giugno - Agosto e 2020, sono stati considerati come piezometri di controllo i pozzi realizzati al confine est dell'area CAVED, in quanto si è dimostrato che i piezometri considerati da ARPA nel parere prot. n.26582 del 29/04/2020 e nel parere prot. n.45862 del 20/07/2020 risultano essere all'interno della zona di cattura.

Nel parere ARPA di luglio 2020 si indicava come POC a valle idrogeologica i pozzi definiti prima dell'entrata in funzione della barriera ovvero P4 e P4A.

La scrivente ha sempre ribadito che non è possibile considerare i POC a valle idrogeologica i piezometri P4 e P4A, in quanto influenzati dalla barriera e rientranti all'interno della zona di cattura.

Nel parere Arpa nota prot. 76028 del 03/11/2020, Arpa dichiarava utile l'acquisizione dei dati di monitoraggio in relazione ai 3 pozzi identificati ubicati nell'area CAVED, al fine di verificare l'assenza di possibile migrazione della contaminazione esternamente al sito oggetto di MISO, ma rimetteva all'Autorità Competente le valutazioni finali in ordine alla definizione univoca dei punti di conformità. Arpa aggiungeva inoltre che al fine di determinare l'ampiezza della zona di cattura reale, non si sarebbero dovuti considerare i risultati dei piezometri A, B, e C.

Di seguito la freatimetria del 2016 con zona di cattura teorica confrontata con la zona di cattura reale Agosto 2020, ricostruita, come richiesto da ARPA Puglia nel parere prot. n. 76028 del 03/11/2020, senza considerare i dati dei piezometri A, B, C.

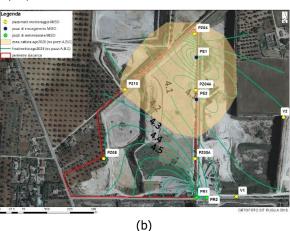


Figura 25: Zona di cattura "teorica" (a) e zona di cattura aggiornata a agosto 2020 (b)

Redatto da: TECNOLOGIA SAMBIENTE

R5
Report di monitoraggio trimestrale
TAF (Settembre-Novembre'20)
secondo progetto di MISO
approvato con D.D. n.39 del
22/02/2019

Pagina **45** di **57**

Anche da questa ulteriore elaborazione si evince che la richiesta di ARPA di <u>identificare</u> <u>univocamente i POC a valle idrogeologica e non influenzata dall'esercizio della barriera,</u> <u>può essere soddisfatta solo individuando come piezometri di monitoraggio i punti esterni alla zona di cattura, tra cui A B e C</u>

Poiché si prevede di rafforzare l'intervento di MISO aggiungendo anche un pozzo di emungimento nell'introno di Pz5A, la proposta definitiva dell'ubicazione dei piezometri di controllo MISO sarà trasmessa nell'ambito della revisione dello stesso progetto.

Nella tabella seguente si riportano i risultati dei monitoraggi delle acque di falda eseguiti nel trimestre in oggetto.

23/09/2020 26/10/2020 26/11/2020 **PARAMETRO** UdM Pozzo Pozzo **Pozzo Pozzo** Pozzo **Pozzo Pozzo Pozzo Pozzo** В C В C В C Α Α Α <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 1,1DCE μg/l 1,2DCP μg/l <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01

Tabella 17: Sintesi risultati 1,1DCE e 1,2 DCP IV trimestre

Come si può osservare dalla Tabella 12, le concentrazioni dei parametri 1,1DCE e 1,2DCP sono risultati sempre inferiori ai limiti di rilevabilità strumentale, indicando che la contaminazione resta confinata all'interno della zona di cattura e non si espande oltre al perimetro dell'adiacente sito CAVED.

Pertanto, si proseguirà con il monitoraggio della falda nelle successive campagne i piezometri A, B e C per valutare l'effettivo raggiungimento di conformità alle CSC.

Redatto da: TECNOLOGIAS AMBIENTI

Report di monitoraggio trimestrale TAF (Settembre-Novembre'20) secondo progetto di MISO approvato con D.D. n.39 del 22/02/2019

Pagina **46** di **57**

2. CONCLUSIONI

Nel mese di Giugno 2018 la società Formica presenta il Progetto operativo di messa in sicurezza operativa del sito, basato sugli esiti dei test sperimentali condotti a seguito di superamenti riscontrati nel pozzo PZ5A dei contaminanti 1,1DCE e 1,2DCP.

Con **D.D. n.39 del 22/02/2019** l'Autorità competente approva il Progetto di Messa in sicurezza Operativa revisione Dicembre 2018 della Discarica di Rifiuti Speciali Formica Ambiente srl – Comune di Brindisi. Il Piano di monitoraggio approvato è finalizzato alla verifica della riduzione delle concentrazioni fino al raggiungimento delle CSC per le acque sotterranee relativamente ai parametri 1,1DCE e 1,2DCP nonché alla valutazione dell'efficacia dello sbarramento idraulico, esaminando gli aspetti **impiantistici**, **idrogeologici** e **idrochimici**.

Il monitoraggio ante-operam è stato svolto in contraddittorio con ARPA Puglia ed è stato formalmente comunicato che la *Messa in esercizio dell'impianto TAF* sarebbe stata effettuata a partire dal 14 Novembre 2019.

In data 01/04/2020, con nota Prot. N. 42/20 è stato trasmesso agli Enti il primo Report trimestrale (novembre 2019 – febbraio 2020).

Con nota prot. n.26582 del 29/04/2020 ARPA Puglia richiede alcune integrazioni e chiarimenti in merito alle elaborazioni eseguite nel primo Report trimestrale.

In data 26/06/2020, con nota Prot. N. 82/20 è stato trasmesso agli Enti il Report di Monitoraggio relativo al secondo trimestre (marzo – maggio 2020) di avvio dell'impianto TAF che recepisce e fornisce le integrazioni ed i chiarimenti richiesti da ARPA nel succitato parere anche per il primo Report trimestrale.

Con nota prot. n.45862 del 20/07/2020 ARPA Puglia richiede alcune integrazioni e chiarimenti in merito alle elaborazioni eseguite nel secondo Report trimestrale.

In data 05/10/2020, con nota Prot. N. 124/20 è stato trasmesso agli Enti il Report di Monitoraggio relativo al terzo trimestre (Giugno – Agosto 2020) di avvio dell'impianto TAF che recepisce e fornisce le integrazioni ed i chiarimenti richiesti da ARPA nel succitato parere anche per il secondo Report trimestrale.

Con nota prot. n.76028 del 03/11/2020 ARPA Puglia richiede alcune integrazioni e chiarimenti in merito alle elaborazioni eseguite nel terzo Report trimestrale.

Redatto da: TECNOLOGIAS AMBIENT

Report di monitoraggio trimestrale TAF (Settembre-Novembre'20) secondo progetto di MISO approvato con D.D. n.39 del 22/02/2019

Pagina **47** di **57**

Il presente documento costituisce, pertanto, il Report di Monitoraggio relativo al quarto trimestre (Settembre – Novembre 2020) ovvero ad 1 anno di avvio dell'impianto TAF che recepisce e fornisce le integrazioni ed i chiarimenti richiesti da ARPA nell'ultimo parere.

Di seguito si riportano considerazioni in relazione a ciascun aspetto monitorato.

VERIFICHE IMPIANTISTICHE

Come per il precedente, nel trimestre in oggetto è stato eseguito il monitoraggio in continuo di PE1 e PE2, dei parametri: stato di funzionamento, portata, parametri chimico fisici, livelli; per i serbatoi è stato monitorato in continuo lo stato dei livelli.

In questo trimestre di monitoraggio sono stati considerati i dati relativi al periodo 15-31 Agosto, 1-30 Settembre, 1-31 Ottobre e 1-30 Novembre 2020, in quanto le verifiche idrochimiche condotte da Formicambiente sono state eseguite nella seconda quindicina dell'ultimo mese del trimestre (26 novembre). Quest'ultimo mese è stato considerato pertanto non solo nella prima quindicina (14 novembre) come era stato previsto nel calcolo dei trimestri a partire dalla data di avvio del TAF (14 novembre 2019), ma per intero.

Si ritiene utile a tal proposito nei successivi report trimestrali, mantenere la medesima suddivisione mensile.

Nel quarto trimestre di trattamento sono stati effettuati dei fermi impianto in corrispondenza delle sequenti date:

- 31/08/2020 è stata eseguita una manutenzione ordinaria del TAF che ha comportato un fermo impianto di circa 8 ore.
- 20/09/2020 è stata eseguita la sostituzione dei filtri a carboni attivi che ha comportato un fermo impianto di circa 8 ore.
- 23/09/2020 è stata eseguita la riparazione perdite piping che ha comportato un fermo impianto di circa 8 ore.
- 29/10/2020 è stata eseguita la calibrazione delle sonde che ha comportato un fermo impianto di circa 8 ore.
- Il periodo di monitoraggio considerato, 15 Agosto-30 Novembre 2020, è stato caratterizzato da continui fermi impianto dovuti all'interruzione di corrente elettrica, verificatisi soprattutto di notte e dal venerdì post attività lavorativa (circa le 16.00) al lunedì mattina (circa le 7.00). Per tale motivo sono state considerate circa 120 ore di fermo per ciascun mese monitorato (settembre, ottobre e novembre) ad eccezione dell'ultima quindicina di agosto in cui c'è stata regolare attività.

Redatto da: TECNOLOGIAS AMBIENTE

Report di monitoraggio trimestrale TAF (Settembre-Novembre'20) secondo progetto di MISO approvato con D.D. n.39 del 22/02/2019

Pagina **48** di **57**

Inoltre in data 25/01/2021 è stata smontata la sonda dal pozzo di emungimento PE1 per malfunzionamento dei sensori installati.

Ogni giorno le pompe si fermano per circa 3 min per lavaggio automatico filtri, pertanto le ore di funzionamento complessivo giornaliero per ciascuna pompa è di 23,95 h.

Nel quarto trimestre si riscontrano **2196,25 h** totali di funzionamento.

Analogamente, i volumi emunti in questo quarto trimestre monitorato sono risultati strettamente connesse alle ore di funzionamento delle pompe PE1 e PE2. Pertanto i volumi totali emunti nel secondo trimestre sono stati **19766,25 m³** da ciascun pozzo, con un rapporto tra portata emunta e portata teorica compresa tra 81-98% circa.

Per quanto attiene l'efficacia del sistema di trattamento del TAF, si è osservato che tutti i valori rilevati in uscita dall'impianto e reimmessi in falda nei punti PR1 e PR2 sono inferiori ai limiti di rilevabilità. Le concentrazioni di 1,2 DCP in questo trimestre sono sempre inferiori alla CSC; si evidenzia pertanto l'efficacia del sistema di trattamento implementato.

VERIFICHE IDROGEOLOGICHE

Questo tipo di controllo ha previsto l'esecuzione di misure periodiche del livello freatimetrico dei Pozzi di Emungimento.

Nello specifico è stato eseguito il terzo trimestre di monitoraggio mensile dei livelli freatimetrici della rete. I dati freatimetrici rilevati per ciascun mese, da settembre a novembre 2020, in corrispondenza dei piezometri P4, P4A, P5A, P8, P10, V1, V2 e dei pozzi PE1, PE2, PR1, PR2, sono stati interpolati mediante kriging ordinario, sulla base del quale è stata ricostruita la piezometria per i diversi momenti di monitoraggio.

Ai succitati pozzi si aggiungono anche quelli realizzati dalla ditta CAVED lungo il confine est del sito (A, B e C).

Si fa presente che il pozzo di reimmissione PR2 (9 m³/h) registra in quasi tutti i rilievi, un livello di falda più alto rispetto gli altri pozzi del TAF e rispetto al rilievo ante operam. Al fine di comprendere l'anomalia, la Società ha eseguito delle verifiche interne sia in relazione ad ulteriori misure freatimetriche (TAF acceso/spento), sia mediante tentativi di "spurgo" con immissione di aria compressa sul fondo pozzo. Alla luce dei risultati ottenuti si avvalora la tesi della scarsa permeabilità del pozzo PR2.

Il sistema di pompaggio è in ogni caso risultato efficace nel creare delle zone di cattura del flusso idrico sotterraneo e la zona di cattura rilevata è comparabile con quella determinata dal modello di flusso e trasporto; si è rilevato uno scostamento tra i valori di carichi nei punti di monitoraggio tra

Redatto da: TECNOLOGIA AMBIENTE

Report di monitoraggio trimestrale TAF (Settembre-Novembre'20) secondo progetto di MISO approvato con D.D. n.39 del 22/02/2019

Pagina **49** di **57**

quanto riportato nel modello e quanto rilevato ma tale effetto è imputabile a variazioni locali di micro-scala del campo di permeabilità, estremamente frequenti nel caso di acquiferi permeabili per fratturazione. Pertanto per tali motivi, in relazione al pozzo PR2, la ricostruzione del campo freatimetrico a scala di sito in tale punto è stata eseguita assumendo come quota della falda quella più prossima alle misurazioni vicine, ciò a causa della scarsa permeabilità di tale pozzo.

In relazione al solo mese di novembre, al fine di poter eseguire un confronto congruente tra la freatimetria e la zona di cattura teoriche in fase di progettazione (dicembre 2016) e la freatimetria e zona di cattura reali (novembre 2020), è stata ricostruita una ulteriore freatimetria escludendo i nuovi pozzi CAVED (A, B e C), così come da osservazione Arpa Puglia – nota di riscontro prot. n.76028 del 03/11/2020.

Considerando, i risultati delle freatimetrie globalmente, a scala di sito, i risultati rilevati confermano la validità del modello utilizzato in fase di progettazione anche tenendo conto che l'ampiezza della zona di cattura è simile tra quanto rilevato e quanto modellato.

Inoltre, al fine di rafforzare l'emungimento delle sostanze contaminanti presenti in falda, sarà trasmesso un progetto di modifica della MISO, ampliando l'emungimento anche nell'intorno del pozzo PZ5A, le cui acque saranno inviate al TAF ed una volta trattate saranno reimmesse nei pozzi di reimmissione.

VERIFICHE IDROCHIMICHE

I dati acquisiti nel corso delle attività del terzo trimestre di monitoraggio e controllo sono stati elaborati e rappresentati in forma di tabelle e mappe. Per ciascun contaminante di interesse sono state determinate:

- tabella con elaborazioni statistiche delle concentrazioni di 1,1 DCE e 1,2 DCP;
- trend di concentrazione dell'1,1 DCE per i piezometri a valle della barriera;
- mappa delle concentrazioni di 1,1 DCE e 1,2 DCP;
- diagrammi della massa di contaminante rimossa nel tempo.

Nello specifico sono state eseguite le elaborazioni statistiche delle concentrazioni di 1,1 DCE e 1,2 DCP rilevate dal novembre 2016 al novembre 2020 per i piezometri P4, P4A, P5A, P8 e P10, dal dicembre 2017 al novembre 2020 per V1 e V2 mentre per i pozzi PE1, PE2, PR1 E PR2 dal novembre 2019 al novembre 2020.

Redatto da: TECNOLOGIA CAMBIEN

Report di monitoraggio trimestrale TAF (Settembre-Novembre'20) secondo progetto di MISO approvato con D.D. n.39 del 22/02/2019

Pagina **50** di **57**

Dalle tabelle statistiche e dai diagrammi di Box & Whisker in relazione al periodo monitorato si evince che le concentrazioni di entrambi i composti sono più elevate nei piezometri P4A, P5A e PE2 sia nella mediana sia nei valori estremi positivi (valori massimi).

La mediana delle concentrazioni di 1,1 DCE sono superiori alla CSC in P4A, P5A, P8, P10, PE1 e PE2 $(0,05 \mu g/l)$ mentre assenti sono i superamenti per 1,2 DCP $(0,15 \mu g/l)$.

Dall'andamento temporale della concentrazione di 1,1 DCE si osserva un decremento dei valori in PE1 e P4A. In P4 si verifica un lieve incremento, mentre in particolare nel mese di novembre 2020 in PE2 e P5A la concentrazione di 1,1 DCE risulta superiore alla CSC. Nel mese di ottobre le concentrazioni in P4 ed in PE2 sono NON conformi rispetto ai limiti applicabili, secondo le definizioni delle Linee Guida ISPRA 52/2009.

Dalla mappa di distribuzione delle isoconcentrazioni si osserva che le concentrazioni di 1,1DCE nei piezometri PZ4A, PE2 e PZ5A, aumentano progressivamente nei tre mesi di monitoraggio (settembre, ottobre, novembre). Nel mese di ottobre le concentrazioni in P4A e PE2 sono NON conformi rispetto ai limiti applicabili, secondo le definizioni delle Linee Guida ISPRA 52/2009, mentre nel mese di settembre 2020 le concentrazioni rilevate in P4A e PE2 risultano inferiori alla CSC.

Negli ultimi due trimestri di monitoraggio <u>le concentrazioni di 1,2 DCP sono sempre inferiori alla CSC,</u> <u>dimostrando pertanto l'efficacia del sistema di trattamento implementato</u>.

Infine sono state determinate le masse di contaminante di 1,1DCE e 1,2DCP rimosse nel primo anno di trattamento (precisamente dopo 381 giorni) quasi **247 g** di 1,1 DCE (i dati cumulati del primo, secondo e terzo trimestre sono rispettivamente 60 g, 80 g e 156 g) e quasi **18 g** di 1,2DCP (i dati cumulati del primo, secondo e terzo trimestre sono rispettivamente 4 g, 6 g e 11,48 g).

PIEZOMETRI DI CONTROLLO

Come per i due precedenti trimestri Marzo - Maggio e Giugno - Agosto e 2020, sono stati considerati come piezometri di controllo i pozzi realizzati al confine est dell'area CAVED denominati A, B e C, in quanto si è dimostrato che i piezometri considerati da ARPA nel parere prot. n.26582 del 29/04/2020 e nel parere prot. n.45862 del 20/07/2020 a valle del barrieramento idraulico, risultano essere all'interno della zona di cattura. Si conferma pertanto che la richiesta di ARPA di identificare univocamente i POC a valle idrogeologica e non influenzata dall'esercizio della barriera, può essere soddisfatta solo individuando come piezometri di monitoraggio i punti esterni alla zona di cattura, tra cui A B e C.

Redatto da: TECNOLOGIAS AMBIENT

R5
Report di monitoraggio trimestrale
TAF (Settembre-Novembre'20)
secondo progetto di MISO
approvato con D.D. n.39 del

22/02/2019

Pagina **51** di **57**

Poiché si prevede di rafforzare l'intervento di MISO aggiungendo anche un pozzo di emungimento nell'introno di Pz5A, la proposta definitiva dell'ubicazione dei piezometri di controllo MISO sarà trasmessa nell'ambito della revisione dello stesso progetto.

Nei nuovi pozzi realizzati, le concentrazioni dei parametri 1,1DCE e 1,2DCP sono risultati inferiori ai limiti di rilevabilità strumentale nel periodo di campionamento (settembre-novembre 2020), indicando che la contaminazione resta confinata all'interno della zona di cattura e non si espande oltre al perimetro dell'adiacente sito CAVED.

Report di monitoraggio trimestrale TAF (Settembre-Novembre'20) secondo progetto di MISO approvato con D.D. n.39 del 22/02/2019

Pagina **52** di **57**

ALLEGATI

R5
Report di monitoraggio trimestrale
TAF (Settembre-Novembre'20)
secondo progetto di MISO
approvato con D.D. n.39 del

22/02/2019

CA WINE ENLE 281

Pagina **53** di **57**

Allegato 1 - Rapporto di intervento 31/08/2020

Redatto da: TECNOLOGIA AMBIENTE

	WATER BEEF		RAPPO	RTO D'I	NTERVENT)				Sil.	MOD.	850-E
Cliente	FORM	1 AK	1 111	21 0-100		Tel.:						
Data:	15/1/17		dirizzo:	STENIE			Città :		Print.		N°	
	rtenza:			inizio:				Ora parte	nza:			
Ora arı			Ora	The state of the s				Ora arrivo	The state of the s			
Tipo In	Tipo Intervento:			THE PERSON NAMED IN	ssistenza		□ F.P.				☐ Canti	iere
		☐ Manut			NO COLORES			oratorio			☐ Gara	
Trasfer	ta:	□ viaggio	Km.				□ altro:		Wiath			
Tecnic	o incaricato:	SN	ENL	ba				Mezzo:	Fio	1 in	0	
										Till sal		
716	Ord. Serv. n°			-	onf. Ord. n°		ALL C		Prev. n°.		//	20
Rif.	Dettaglio attivit											
	Richiesta interv	ento urgen	nte Sig		al Si	g		del .	//2	20		
			DESC	RIZION	NE INTER	VENT	O E	CONTROL				
					IN THE PARTY OF TH						. K	10
	PETTUSI				2 5	MAR	ONTO	TAS	TSU	CNE	2 /X	ence
T	oi foli	DA.	TSK			"						
	× 04	2011			- 1	5 2111		11:0			/	
-	spore	CAN.	STUA	6 (SACTIA	anc	FU	NABWI	ant	1/61	DI MO	INGO D
V	Mi fi an		CONT	1010	0 .							
			-/				5			/	1	470
			-						-/			
			/			+			-			
		1							1	4		
		-					-44		/			
		-/-	-				4					
		1		-				-		the same		
		/	_	-				-				
	. /	-										
194			MATER	LALL	UTILIZZA	TI			A PRE	VENT.	C	HECK
Q.TA			WATER	IALI	OTILIZZA				SI	NO	POS	NEG
			/				-					
			1				-/					
			/	-			1					
		/					1	X - 1				A TOP TO
		/				/						
				and an		1						
Firma	Operatore	26	V	IX o			\	Firma \	erificato/	ore		
(200	D	THE RESERVE TO SHARE THE PARTY OF THE PARTY		ome del Firmatar							
				W								

IL PIANO DEI CONTROLLI DA ESEGUIRE VIENE DISTRIBUITO A TUTTI GLI OPERATORI (1 COPIA IN OGNI MEZZO)

R5
Report di monitoraggio trimestrale
TAF (Settembre-Novembre'20)
secondo progetto di MISO
approvato con D.D. n.39 del

22/02/2019

Pagina **54** di **57**

Allegato 2 – Rapporto di intervento del 29/10/2020

Redatto da: TECNOLOGIA AMBIENTE

	RA	APPORTO D'INTERVENTO)			MOD.	850-E
Climan 4	1						
Cliente: Fornic		ENTE	Tel.:			on teran	
Data: 29-10-2	o Indiri:		Città :			N°:	
Ora partenza:		Ora inizio:		Ora parten:	za:		
Ora arrivo:		Ora fine:		Ora arrivo:			
Tipo Intervento:	Contratto	Conduzione/Assistenza	□ F.I	P.O.		□ Cantio	ere
	☐ Manutenz	ione	□ La	boratorio		☐ Garar	nzia
Trasferta:	□ viaggio Kn		□ altro				
Tecnico incaricato:	AUTOL	20 D./VIGO		Mezzo:	Bocise		19
1 0/2 1 30/2 1 mm - 12 1		37/010			OWE THE PERSON		NO.
Ord. Serv. n°	del/2	Conf. Ord. n°	. del/2	0	Prev. n° del	//2	20
Rif. Dettaglio attivi	tà						
		Sig al Si				16.1	
	0	ESCRIZIONE INTER	VENTO E	CONTROLLI			
- 224 (11-	2150120	e STATA 5	CEAT AS	a / o	(91.0.00	.01.0	Λ= ==
COURT OF		S SUNT OF	TOTOTA	0 1 / 0	OICH STATE	IONO.	- Bo Clo
SOUDS III	CT (CHEN O)	STEICHT DEI P	OFFI	1.2/2	DEC FILLS		
N.B. 31 RI	SUA S	00871280 Para	720	60350	U. A MAIC	1200 C	2 Sur
							w I The
		and the same					
				2		metry of radio	
							14
A CONTRACT OF THE PARTY OF THE	/						
	/			/			
			/				
	/						
/							
	15.4				A PREVENT.	C	HECK
O TA'	M	TERIALI UTILIZZAT			SI NO	POS	NEG
N.5 BUSTIN	e k. 0	H 7.00 /8011318	D D.	20 00 1	1,0	103	IVLO
N.A FUACON	The second secon		DA 25				
N.1 FACOUR		UPIDUE AH 9.21				El-Artigle	
	D1 50	WEIGHT REDICY &	211380	A Soom	Contactor of the State of the S	11/25/	
N.Y ENCOR	S D SOC	14 .2010 3 301012 ON	413 45 B	A 250 ml			
						/	
						/	
Firma Operatore		Timbro e Firma Cliente		Firma Vo	erificatore	1	
1111		I det		01		K	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
				IVI		X\	
11/1/		ROBERTO PAO	54.	DAL		1	
101		(Nome e Cognome del Firmatari	io in stampatello)			Y'AA	See Day

IL PIANO DEI CONTROLLI DA ESEGUIRE VIENE DISTRIBUITO A TUTTI GLI OPERATORI (1 COPIA IN OGNI MEZZO)


R5
Report di monitoraggio trimestrale
TAF (Settembre-Novembre'20)
secondo progetto di MISO
approvato con D.D. n.39 del

22/02/2019

CA AMBIENTE SAL

Pagina **55** di **57**

Allegato 3 – Rapporto di intervento 25/01/2020

Cliente: Formics	SUR	FAITE.	Tel.:						
Data: 25/01/2021	Indirizzo:	1313		Città :				N°	:
Ora partenza:	Ora	inizio: 08:30			Ora partenz	a:	14		٧
Ora arrivo:		fine: 18:30			Ora arrivo:				3
Tipo Intervento:		luzione/Assistenza		□ F.P.	0.			☐ Can	tiere
MM	anutenzione		- 2	☐ Lab	oratorio			☐ Gara	anzia
	aggio Km.			□ altro:					
Tecnico incaricato:	ecnico incaricato: ANTONIO B - SNITANIO D.P Mezzo: FIOTLINO								
			- 10		/				
Ord. Serv. n° del		Conf. Opd. n°			/	rev. n°.	del	//	20
Richiesta intervento	ırgente Sig	al Si	g		del	//2	20		
	DESC	RIZIONE INTER	VENT	0 F	CONTROLL				
100						1 0	71 0 1		00
IN DOTA									
LOS SONDS	GEOVE	S MOSLEUNGS	ways	NTE	2002	POZ	320	N /	1
PER PORTA	els fo	nesso il m	OSTN	o Li	Bons	TONV	0,		-
*						11			No.
						/	\ 		
						-/-			
					/				
					/_				
						200			7.
				/					
								*	
			-mure X			A PRE	VENT.	0	HECK
Q.TA'	MATER	RIALI UTILIZZA	TI			SI	NO	POS	NEG
Q.IA		1			1		200		
									7
Firma Operatore	l c:	rma Verificatore			Timbro e	Firma	Cliente		
Firma Operatore	FI	illia veillicatore			111	P	The	2	
16 16	20								
71(1					ing	? 0	SUS	1050	010
	4				(Nome e Co				

Report di monitoraggio trimestrale TAF (Settembre-Novembre'20) secondo progetto di MISO approvato con D.D. n.39 del 22/02/2019

Pagina

56 di **57**

Allegato 4- Rapporti di prova

Redatto da: TECNOLOGIAS AMBIENTE

CHIMIE srl SISTEMA QUALITA' AMBIENTE

MR-07-01 VERBALE DI PRELIEVO CAMPIONI

Rev 3 del 20/01/17

N° Verbale di prelievo : 64/0 °	Q
·	
Data: 23. 09. 2020 Ora: 9,00 Cond	dizioni ambientali: <u>らざRぞWの</u>
Nome prelevatore: G. GIPRIA	WO
Qualifica prelevatore: १७०१० ८ ।	1 MICO
Procedura di campionamento e trasport	o: ISO 5667-11 ed APAT CNR IRSA n° 1030
Cliente: FORMICA AMBIENTE Srl – Disca	rica per rifiuti non pericolosi.
Indirizzo luogo di campionamento: C.da	Formica – Brindisi.
Descrizione Campione: Monitoraggio Acc	que di falda
Punto di prelievo:	
Etichetta Campione:	
PZ B T 19,3°C; P 41,41 m; O2disc. 4,61	mg/l; ORP 170,9 mV; pH 7,08; Cond. 3300 μS/cm
PZ C T 19,6 °C; P 41,58 m; O2disc. 4,58	mg/l; ORP 1843 mV; pH 7,12; Cond. 3230 μS/cm
PZ T °C; P m; O2disc.	mg/l; ORP mV; pH ; Cond. μS/cm
PZ T C; P m; O _{2disc} .	mg/l; ORP mV; pH ; Cond. μS/cm
PZ T °C; P m; O _{2disc} .	mg/l; ORP mV; pH ; Cond. μS/cm
PZT °C; Pm; O _{2disc}	mg/l; ORP mV; pH ; Cond. μS/cm
PZ T °C; P m; Ø2disc.	mg/l; ORP mV; pH ; Cond. µS/cm
T °C; P m; O _{2disc} .	mg/l; ORP mV; pH ; Cond. µS/cm

Note: Prima di ogni campionamento è stato effettuato lo spurgo con tecnica low-flow.

Le quantità e le modalità di conservazione delle aliquote campionate sono conformi a quanto riportato nel manuale APAT CNR IRSA n° 1030 Man 29/2003.

PROVE RICHIESTE	METODICA
Come da vs commessa nº 0190/16	Come da vs commessa nº 0190/16

Firma del Prelevatore:

Firma e Timbro dell'Azienda:

CHIMIE srl SISTEMA QUALITA' AMBIENTE

MR-07-01 VERBALE DI PRELIEVO CAMPIONI

Rev 3 del 20/01/17

N° Verbale di prelievo :	65/09

Data: <u>23.09.2070</u> Ora: <u>9,00</u> Condizioni ambientali: <u>SERENO</u>

Nome prelevatore: G. CIPRIANO

Qualifica prelevatore: PBRIDO CHIMICO

Procedura di campionamento e trasporto: ISO 5667-11 ed APAT CNR IRSA nº 1030

Cliente: FORMICA AMBIENTE Srl – Discarica per rifiuti non pericolosi.

Indirizzo luogo di campionamento: C.da Formica – Brindisi.

Descrizione Campione: Monitoraggio Acque di falda

Punto di prelievo: Pa 4A - 8 - 10 - PEL - 8EZ - VZ - A.

Etichetta Campione:

PZ 4A T 20,8 °C; P 43,67 m; O2disc. 3,7 mg/l; ORP 161,5 mV; pH 7,04; Cond. 3560 μS/cm PZ 08 T 20,6 °C; P 41,90 m; O2disc. 5,11 mg/l; ORP 166,7 mV; pH 7,04; Cond. 3640 μS/cm PZ 10 T 19,7 °C; P 44,77 m; O2disc. 5,06 mg/l; ORP 130,0 mV; pH 7,01; Cond. 2950 μS/cm PZ PE T 19,7 °C; P 44,77 m; O2disc. 4,78 mg/l; ORP 207,0 mV; pH 6,98; Cond. 3610 μS/cm PZ PE T 19,7 °C; P 44,17 m; O2disc. 4,64 mg/l; ORP 203,3 mV; pH 7,02; Cond. 3590 μS/cm PZ V2 T 19,3 °C; P 40,4 m; O2disc. 3,95 mg/l; ORP 178,9 mV; pH 7,07; Cond. 2800 μS/cm PZ PA T 19,7 °C; P 39,65 m; O2disc. 4,86 mg/l; ORP 182,0 mV; pH 6,91; Cond. 2820 μS/cm PZ PA T 19,7 °C; P 44,15 m; O2disc. 4,86 mg/l; ORP 182,0 mV; pH 6,91; Cond. 2820 μS/cm PZ PA T 20,4 °C; P 44,15 m; O2disc. 4,86 mg/l; ORP 182,0 mV; pH 6,91; Cond. 2820 μS/cm PZ PA T 20,4 °C; P 44,15 m; O2disc. 4 mg/l; ORP 182,0 mV; pH 6,91; Cond. 4 μS/cm

Note: Prima di ogni campionamento è stato effettuato lo spurgo con tecnica low-flow.

Le quantità e le modalità di conservazione delle aliquote campionate sono conformi a quanto riportato nel manuale APAT CNR IRSA n° 1030 Man 29/2003.

Sono stati prelevati n° $\mathcal{O}\mathcal{A}$ campioni da \mathcal{A},\mathcal{O} It in contenitori in polietilene; n° $\mathcal{O}\mathcal{A}$ campioni da \mathcal{A},\mathcal{O} It in contenitori in vetro scuro; n \mathcal{A} contenitori sterili da 100cc per la batteriologica, n° $\mathcal{O}\mathcal{I}$ vials in vetro scuro da 40 ml.

PROVE RICHIESTE	METODICA
Come da vs commessa nº 0190/16	Come da vs commessa nº 0190/16

Firma del Prelevatore:_

Firma e Timbro dell'Azienda:

CHIMIE STI SISTEMA QUALITA' AMBIENTE

MR-07-01 VERBALE DI PRELIEVO CAMPIONI

Rev 3 del 20/01/17

N° Verbale di prelievo : 74/09	_
Data: <u> </u>	ioni ambientali: SERENO
Nome prelevatore: _ Co. GIPRIANO)
Qualifica prelevatore: PERITO CHIMIC	0
Procedura di campionamento e trasporto:	ISO 5667-11 ed APAT CNR IRSA n° 1030
Cliente: FORMICA AMBIENTE Srl – Discario	a per rifiuti non pericolosi.
Indirizzo luogo di campionamento: C.da F	ormica – Brindisi.
Descrizione Campione: Monitoraggio Acque	e di falda
Punto di prelievo: 8z 04-V1-PR1-8	RZ-TAF-01-02-09
Etichetta Campione:	
PZ 04 T 20,0 °C; P 43,71 m; O2disc. 5,12 n	ng/l; ORP <u>105,7</u> mV; pH <u>7,08</u> ; Cond. <u>2800</u> µS/cr
PZ V1 T 21,4 °C; P 4082 m; O2disc. 4,40 n	ng/l; ORP <u>102,7-</u> mV; pH <u>7,03</u> ; Cond. <u>3400</u> µS/cr
	ng/l; ORP <u>₹³³,6</u> mV; pH <u>₹,3%</u> ; Cond. <u>3490</u> μS/cr
PZPR2T70,6°C; P 3772 m; O2disc. 11,04 n	ng/l; ORP <u>427,7 </u> mV; pH <u>7,39 ;</u> Cond. <u>3510</u> μS/cr
PZ 02 T 70,1 °C; P 44,25 m; O2discn	ng/l; ORP mV; pH; CondµS/cr
PZ 09 T 20,3 °C; P 42,67 m; O2discn	ng/l; ORPmV; pH; CondµS/cr
TAF T 19,9 °C; P / m; O2disc. 6,09 m	ng/l; ORP <u>124,1</u> mV; pH <u>7,19</u> ; Cond. <u>3600</u> μS/cn
Note : Prima di ogni campionamento è stato effet	tuato lo spurgo con tecnica low-flow.
Le quantità e le modalità di conservazione dell	e aliquote campionate sono conformi a quanto
riportato nel manuale APAT CNR IRSA n° 1030 N	lan 29/2003.
Sono stati prelevati n° <u>01</u> campioni da <u></u>	(0 It in contenitori in polietilene n° 01
campioni da 🚜 🗘 It in contenitori in vetro scu	
batteriologica, n° <u>O</u> vials in vetro scuro da 40	
PROVE RICHIESTE	METODICA
Come da vs commessa nº 0190/16	Come da vs commessa nº 0190/16

Firma e Timbro dell'Azienda

Firma del Prelevatore:

Ordine dei CHIMICI e dei FISICI della Prov. di Treviso n° A093 Codice Fiscale GSTDRN42R12H823B P.IVA 01627660267 Via Pirzio Biroli n.1 - 31046 ODERZO (TV)

Triggiano, 23 ottobre 2020

Certificato n° 20LA33439

CERTIFICATO ANALISI

(valido a tutti gli effetti come da D. L. n° 842/28)

COMMITTENTE: FORMICA AMBIENTE srl - Via Groenlandia 47 - Roma

ETICHETTA: Campione di acqua di falda prelevato dal pozzo n° **4A** della discarica per rifiuti non pericolosi sita in c.da Formica (BR)

Data ricezione campione: 23/09/20 Profondità della falda: 43,7 m

Il campione è stato prelevato dal tecnico dello studio CHIMIE Srl, P. Chim. G. Cipriano come da verbale nº 65/09

RISULTATI

PARAMETRO	unità di misura	valore determinato	D. Lgs. 152/06 Tab. 2 allegato 5 alla parte IV Titolo V
рН		7,04	
Metodo di analisi di riferimento: UNI EN ISO 10523:2012			
limite di quantificazione: > 1 e < 13		incertezza: ±	0,12
Temperatura	°C	20,8	
Metodo di analisi di riferimento: APAT CNR IRSA 2100 Man 29 2003			
limite di quantificazione: 1		incertezza: ±	0,2
Ossigeno disciolto	mg/l	3,70	
Metodo di analisi di riferimento: Strumentale - Sensore di Ossigeno Disciolto a luminescenza LDO			
limite di quantificazione: 0,5		incertezza: ±	0,37
Potenziale Redox	mV	167,5	
Metodo di analisi di riferimento: Strumentale - Sensore ORP		•	
limite di quantificazione: 10		incertezza: ±	16,8
Conducibilità	uS/cm a 20 °C	3560	
Metodo di analisi di riferimento: UNI EN 27888:1995		'	'
limite di quantificazione: 10		incertezza: ±	71,2
Ossidabilità O2	mg/l	0,72	
Metodo di analisi di riferimento: metodo Tritrimetrico (secondo Kubel), ISTISAN 07/31			
limite di quantificazione: 0,5		incertezza: ±	0,06
Domanda biochimica di ossigeno (BOD5) a 20°C senza nitrificazione	mgO ₂ /l	< 0,5	
Metodo di analisi di riferimento: APAT CNR IRSA 5120 Man 29 2003			1
limite di quantificazione: 0,5		incertezza:	
Carbonio organico totale (TOC)	mg/l	0,3	
Metodo di analisi di riferimento: APAT CNR IRSA 5040 Man 29 2003			1
limite di quantificazione: 0,1		incertezza: ±	0,1

Ordine dei CHIMICI e dei FISICI della Prov. di Treviso n° A093 Codice Fiscale GSTDRN42R12H823B P.IVA 01627660267 Via Pirzio Biroli n.1 - 31046 ODERZO (TV)

Triggiano, 23 ottobre 2020

Certificato n° 20LA33439

CERTIFICATO ANALISI

Durezza totale	°F	71	
Metodo di analisi di riferimento: APAT CNR IRSA 2040 A Man 29 2003		!	<u>'</u>
limite di quantificazione: 5		incertezza: ± 1	
			1
ianuri	μg/l	< 1	50
Metodo di analisi di riferimento: APAT CNR IRSA 4070 Man 29 2003			
limite di quantificazione: 1		incertezza:	
luoruri	mg/l	< 0,1	1,5
Metodo di analisi di riferimento: UNI EN ISO 10304-1:2009	9/	10,1	.,0
limite di quantificazione: 0,1		incertezza:	
litriti come NO2	μg/l	< 50	500
Metodo di analisi di riferimento: UNI EN ISO 10304-1:2009		1	
limite di quantificazione: 50		incertezza:	
olfati	mg/l	143	250
Metodo di analisi di riferimento: UNI EN ISO 10304-1:2009			
limite di quantificazione: 0,1		incertezza: ± 14	
Cloruri	mg/l	932	
Metodo di analisi di riferimento: UNI EN ISO 10304-1:2009	mg/i	932	
limite di quantificazione: 0,1		incertezza: ± 93,2	
litrati come NO3	mg/l	14	
Metodo di analisi di riferimento: UNI EN ISO 10304-1:2009		•	
limite di quantificazione: 0,1		incertezza: ± 1	
			1
mmoniaca come NH4 Metodo di analisi di riferimento: UNICHIM 2363:2009	mg/l	< 0,05	
Metodo di analisi di meninento. Orrichimi 2303.2009			
limite di quantificazione: 0,05		incertezza:	
Illuminio	μg/l	< 1	200
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016	. •	- 1	1
limite di quantificazione: 1		incertezza:	
ntimonio	μg/l	< 0,3	5
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016			
limite di quantificazione: 0,3		incertezza:	
vecents.		- 4	
rgento Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016	µg/l	< 1	10
motodo di diranti di monimonio. Otti Ett 100 112572.2010			
limite di quantificazione: 1		incertezza:	

Ordine dei CHIMICI e dei FISICI della Prov. di Treviso n° A093 Codice Fiscale GSTDRN42R12H823B P.IVA 01627660267 Via Pirzio Biroli n.1 - 31046 ODERZO (TV)

Triggiano, 23 ottobre 2020

Certificato n° 20LA33439

CERTIFICATO ANALISI

Arsenico	μg/l	< 1	10
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016			
limite di quantificazione: 1		incertezza:	
Paula		45	
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016	μg/l	45	
limite di quantificazione: 1		incertezza: ± 5	
Berillio	μg/l	< 0,3	4
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016			l
limite di quantificazione: 0,3		incertezza:	
		I	
Boro Caracteria de la constante de la constant	μg/l	250	1000
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016			
limite di quantificazione: 1		incertezza: ± 25	
Cadmio	μg/l	< 0,3	5
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016	13	3,0	
limite di quantificazione. O 2		incertezza:	
limite di quantificazione: 0,3		incertezza.	
Calcio	mg/l	127	
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016			
limite di quantificazione: 0,001		incertezza: ± 13	
Cobalto	 μg/l	< 1	50
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016			
		. , _	
limite di quantificazione: 1		incertezza:	
Cromo totale	μg/l	< 1	50
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016		•	•
limite di quantificazione: 1		incertezza:	
Norma control ante		105	
Cromo esavalente Metodo di analisi di riferimento: APAT CNR IRSA n° 3150 Man 29 2003	μg/l	< 0,5	5
limite di quantificazione: 0,5		incertezza:	
erro	μg/l	< 1	200
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016		1	
limite di quantificazione: 1		incertezza:	
		. 1	
Magnesio Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016	mg/l	95	
ivietodo di arialisi di l'iferimento: ONI EN ISO 17294-2:2016			
limite di quantificazione: 0,001		incertezza: ± 10	

Ordine dei CHIMICI e dei FISICI della Prov. di Treviso n° A093 Codice Fiscale GSTDRN42R12H823B P.IVA 01627660267 Via Pirzio Biroli n.1 - 31046 ODERZO (TV)

Triggiano, 23 ottobre 2020

Certificato n° 20LA33439

CERTIFICATO ANALISI

Manganese	μg/l	< 1	50
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016			
limito di quantificazione: 1		incertezza:	
limite di quantificazione: 1		incertezza.	
Mercurio	μg/l	< 0,1	1
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016			<u> </u>
limite di quantificazione: 0,1		incertezza:	
Molibdeno	μg/l	12,0	
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016			
limite di quantificazione: 1		incertezza: ± 1,2	
Nichelio	ug/l	<1	20
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016	μg/l	<u> </u>	20
limite di quantificazione: 1		incertezza:	
Piombo	μg/l	< 1	10
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016			
limite di quantificazione: 1		incertezza:	
Potassio	mg/l	22	
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016			1
limite di quantificazione: 0,001		incertezza: ± 2	
Rame	μg/l	< 1	1000
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016			
limite di quantificazione: 1		incertezza:	
Selenio	//	< 0.2	10
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016	μg/l	< 0,3	10
limite di quantificazione: 0,3		incertezza:	
Sodio	mg/l	596	
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016			
limite di quantificazione: 0.001		incertezza: ± 60	
limite di quantificazione: 0,001		Incertezza. ± 60	
Stagno	μg/l	< 1	
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016		- '	•
limite di quantificazione: 1		incertezza:	
Tallio	μg/l	< 0,2	2
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016			
limite di quantificazione: 0,2		incertezza:	

Ordine dei CHIMICI e dei FISICI della Prov. di Treviso n° A093 Codice Fiscale GSTDRN42R12H823B P.IVA 01627660267 Via Pirzio Biroli n.1 - 31046 ODERZO (TV)

Triggiano, 23 ottobre 2020

Certificato n° 20LA33439

CERTIFICATO ANALISI

			Т	
Tellurio		μg/l	< 1	
Metodo di analisi di riferimento: UNI EN ISO 1729	94-2:2016 			
	limite di quantificazione: 1		incertezza:	
/anadio Metodo di analisi di riferimento: UNI EN ISO 1729	04.0:2046	μg/l	2,5	
Metodo di analisi di riferimento: UNI EN 150 1729	14-2:2016			
	limite di quantificazione: 1		incertezza: ± 0,3	
Zinco		μg/l	< 1	3000
Metodo di analisi di riferimento: UNI EN ISO 1729	04-2:2016	μ9/1	× 1	3000
	limite di quantificazione: 1		incertezza:	
Benzene		μg/l	< 0,1	1
Metodo di analisi di riferimento: UNI EN ISO 1568	0:2005		-,	1
	limite di quantificani 0.1		incortor	
	limite di quantificazione: 0,1		incertezza:	
Etilbenzene		μg/l	< 0,1	50
Metodo di analisi di riferimento: UNI EN ISO 1568	0:2005		!	!
	limite di quantificazione: 0,1		incertezza:	
	mino di qualitino dello co, i			
Stirene		μg/l	< 0,1	25
Metodo di analisi di riferimento: UNI EN ISO 1568	0:2005			
	limite di quantificazione: 0,1		incertezza:	
Toluene Metodo di analisi di riferimento: UNI EN ISO 1568	0.2005	μg/l	< 0,1	15
Weloud di analisi di filefililerilo. UNI EN 150 1500	0.2005			
	limite di quantificazione: 0,1		incertezza:	
o-Xilene		μg/l	< 0,1	10
Metodo di analisi di riferimento: UNI EN ISO 1568	0:2005	μул	\(\text{0,1}\)	10
	limite di quantificazione: 0,1		incertezza:	
Benzo(a)antracene		μg/l	< 0,01	0,1
Metodo di analisi di riferimento: EPA 8270E			3,00	
	limite di quantificazione: 0,01		incertezza:	
Benzo(a)pirene		μg/l	< 0,001	0,01
Metodo di analisi di riferimento: EPA 8270E			1	ı
	limite di quantificazione: 0,001		incertezza:	
	mine di quantineazione. 0,001		moontezza.	
Benzo(b)fluorantene		μg/l	< 0,01	0,1
Metodo di analisi di riferimento: EPA 8270E			•	
	limite di quantificazione: 0,01		incertezza:	

Ordine dei CHIMICI e dei FISICI della Prov. di Treviso nº A093 Codice Fiscale GSTDRN42R12H823B P.IVA 01627660267 Via Pirzio Biroli n.1 - 31046 ODERZO (TV)

Triggiano, 23 ottobre 2020

Certificato n° 20LA33439

CERTIFICATO ANALISI

Benzo(k)fluorantene		μg/l	< 0,005	0,05
Metodo di analisi di riferimento: EPA 8270E				
limite di qua	ntificazione: 0,005		incertezza:	
enzo(g,h,i)perilene		μg/l	< 0,001	0,01
Metodo di analisi di riferimento: EPA 8270E		μул	< 0,001	0,01
limite di qua	ntificazione: 0,001		incertezza:	
risene		μg/l	< 0,01	5
Metodo di analisi di riferimento: EPA 8270E		μу/ι	\(\text{0,01}\)	3
limite di qua	ntificazione: 0,01		incertezza:	
	·		ı	
Dibenzo(a,h)antracene Metodo di analisi di riferimento: EPA 8270E		μg/l	< 0,001	0,01
Metodo di arialisi di Filerimento. EFA 6270E				
limite di qua	ntificazione: 0,001		incertezza:	
ndeno(1,2,3-c,d)pirene		μg/l	< 0,01	0,1
Metodo di analisi di riferimento: EPA 8270E				
limite di qua	ntificazione: 0,01		incertezza:	
irene		μg/l	< 0,01	50
Metodo di analisi di riferimento: EPA 8270E				
limite di qua	ntificazione: 0,01		incertezza:	
commatoria IPA (punto 38, tabella 2, allegato 5, tit	olo V d. Lgs 152/2006)	μg/l	< 0,01	0,1
Metodo di analisi di riferimento: EPA 8270E			1	!
limite di qua	ntificazione: 0,01		incertezza:	
Clorometano		/!	< 0.4	1.5
Metodo di analisi di riferimento: UNI EN ISO 15680:2005		µg/l	< 0,1	1,5
Handa di ma				
ilmite di qua	ntificazione: 0,1		incertezza:	
Cloroformio (triclorometano)		μg/l	< 0,01	0,15
Metodo di analisi di riferimento: UNI EN ISO 15680:2005			 	
limite di qua	ntificazione: 0,01		incertezza:	
Cloruro di vinile		μg/l	< 0,05	0,5
Metodo di analisi di riferimento: UNI EN ISO 15680:2005		-	·	
limite di qua	ntificazione: 0,05		incertezza:	
,2 - Dicloroetano		ug/I	< 0,1	3
Metodo di analisi di riferimento: UNI EN ISO 15680:2005		μg/l	> 0,1	
			in and	
limite di qua	ntificazione: 0,1		incertezza:	

Ordine dei CHIMICI e dei FISICI della Prov. di Treviso n° A093 Codice Fiscale GSTDRN42R12H823B P.IVA 01627660267 Via Pirzio Biroli n.1 - 31046 ODERZO (TV)

Triggiano, 23 ottobre 2020

Certificato n° 20LA33439

CERTIFICATO ANALISI

I,1 - Dicloroetilene	μg/l	0,040	0,05
Metodo di analisi di riferimento: UNI EN ISO 15680:2005		!	
limite di quantificazione: 0,005		incertezza: ± 0,00	16
ricloroetilene	μg/l	< 0,1	1,5
Metodo di analisi di riferimento: UNI EN ISO 15680:2005	13		
limite di quantificazione: 0,1		incertezza:	
etracloroetilene	μg/l	0,10	1,1
Metodo di analisi di riferimento: UNI EN ISO 15680:2005		•	L
limite di quantificazione: 0,1		incertezza: ± 0,02	!
saclorobutadiene (HCBD)	μg/l	< 0,01	0,15
Metodo di analisi di riferimento: UNI EN ISO 15680:2005			
limite di quantificazione: 0,01		incertezza:	
commatoria organoalogenati (punto 47, tabella 2, allegato 5, titolo V d. Lgs	ua/I	< 1	10
52/2006) Metodo di analisi di riferimento: UNI EN ISO 15680:2005	μg/l	×1	10
limite di quantificazione: 1		incertezza:	
,1 - Dicloroetano	μg/l	0,10	810
Metodo di analisi di riferimento: UNI EN ISO 15680:2005			
limite di quantificazione: 0,1		incertezza: ± 0,02	!
,2 - Dicloroetilene	μg/l	< 0,1	60
Metodo di analisi di riferimento: UNI EN ISO 15680:2005			I
limite di quantificazione: 0,1		incertezza:	
2 - Dicloropropano	μg/l	< 0,01	0,15
Metodo di analisi di riferimento: UNI EN ISO 15680:2005		10,01	, , , ,
limite di quantificazione: 0,01		incertezza:	
1,2 - Tricloroetano	μg/l	< 0,01	0,2
Metodo di analisi di riferimento: UNI EN ISO 15680:2005		-,	
limite di quantificazione: 0,01		incertezza:	
,2,3 - Tricloropropano	μg/l	< 0,001	0,001
Metodo di analisi di riferimento: UNI EN ISO 15680:2005		L	ı
limite di quantificazione: 0,001		incertezza:	
1,2,2 - Tetracloroetano	μg/l	< 0,005	0,05
Metodo di analisi di riferimento: UNI EN ISO 15680:2005	1.5	-,•••	1

Ordine dei CHIMICI e dei FISICI della Prov. di Treviso n° A093 Codice Fiscale GSTDRN42R12H823B P.IVA 01627660267 Via Pirzio Biroli n.1 - 31046 ODERZO (TV)

Triggiano, 23 ottobre 2020

Certificato n° 20LA33439

CERTIFICATO ANALISI

ribromometano	μg/l	< 0,01	0,3
Metodo di analisi di riferimento: UNI EN ISO 15680:2005		<u>'</u>	!
limite di quantificazione: 0,01		incertezza:	
			1
2 - Dibromoetano Metodo di analisi di riferimento: UNI EN ISO 15680:2005	μg/l	< 0,001	0,001
Microso di diffalisi di filici informo. Givi El vi 100 10000. 2000			
limite di quantificazione: 0,001		incertezza:	
ibromoclorometano	μg/l	< 0,01	0,13
Metodo di analisi di riferimento: UNI EN ISO 15680:2005		·	
limite di quantificazione: 0,01		incertezza:	
romodiclorometano	 μg/l	< 0,01	0,17
Metodo di analisi di riferimento: UNI EN ISO 15680:2005		,	
limite di quantificazione: 0,01		incertezza:	
itrobenzene	μg/l	< 0,3	3,5
Metodo di analisi di riferimento: EPA 8260 rev 3 2006			
limite di quantificazione: 0,3		incertezza:	
2 - Dinitrobenzene	μg/l	< 0,3	15
Metodo di analisi di riferimento: EPA 8260 rev 3 2006			l
limite di quantificazione: 0,3		incertezza:	
3- dinitrobenzene	μg/l	< 0,3	3,7
Metodo di analisi di riferimento: EPA 8260 rev 3 2006		I	
limite di quantificazione: 0,3		incertezza:	
Ioronitrobenzeni (ognumo) Metodo di analisi di riferimento: EPA 8260 rev 3 2006	μg/l	< 0,05	0,5
Metodo di dinalisi di Inclinicito.			
limite di quantificazione: 0,05		incertezza:	
onoclorobenzene	μg/l	< 0,1	40
Metodo di analisi di riferimento: UNI EN ISO 15680:2005		·	•
limite di quantificazione: 0,1		incertezza:	
2 - diclorobenzene	μg/l	< 0,1	270
Metodo di analisi di riferimento: UNI EN ISO 15680:2005	μ9/1	~ 0,1	210
limite di quantificazione: 0,1		incertezza:	
innie di quantineazione. U, i		IIIOGIIGZZā.	
4 - diclorobenzene	μg/l	< 0,05	0,5
Metodo di analisi di riferimento: UNI EN ISO 15680:2005			
limite di quantificazione: 0,05		incertezza:	

Ordine dei CHIMICI e dei FISICI della Prov. di Treviso n° A093 Codice Fiscale GSTDRN42R12H823B P.IVA 01627660267 Via Pirzio Biroli n.1 - 31046 ODERZO (TV)

Triggiano, 23 ottobre 2020

Certificato n° 20LA33439

CERTIFICATO ANALISI

,2,4 - Triclorobenzene		μg/l	< 0,1	190
Metodo di analisi di riferimento: UNI EN ISO 1568	0:2005		3,1	
	limite di quantificazione: 0,1		incertezza:	
	u. quaritinounion o, .			
2,4,5 - Tetraclorobenzene		μg/l	< 0,1	1,8
Metodo di analisi di riferimento: EPA 8270E			·	•
	limite di quantificazione: 0,1		incertezza:	
entaclorobenzene		μg/l	< 0,5	5
Metodo di analisi di riferimento: EPA 8270E			· · · · · · · · · · · · · · · · · · ·	
	limite di quantificazione: 0,5		incertezza:	
saclorobenzene (HCB)		μg/l	< 0,001	0,01
Metodo di analisi di riferimento: EPA 8270E			,	
	limite di quantificazione: 0,001		incertezza:	
- clorofenolo		μg/l	< 1	180
Metodo di analisi di riferimento: EPA 8270E				
	limite di quantificazione: 1		incertezza:	
,4 - Diclorofenolo		μg/l	< 1	110
Metodo di analisi di riferimento: EPA 8270E				
	limite di quantificazione: 1		incertezza:	
,4,6 - Triclorofenolo		μg/l	< 0,5	5
Metodo di analisi di riferimento: EPA 8270E			·	•
	limite di quantificazione: 0,5		incertezza:	
Pentaciorofenolo		μg/l	< 0,05	0,5
Metodo di analisi di riferimento: EPA 8270E		10.	-,	
	limite di quantificazione: 0,05		incertezza:	
leeler			1004	
Metodo di analisi di riferimento: EPA 8270E		μg/l	< 0,01	0,1
	limite di quantificazione: 0,01		incertezza:	
11.2				I .
Ildrin Metodo di analisi di riferimento: EPA 8270E		μg/l	< 0,003	0,03
	limite di quantificazione: 0,003		incertezza:	
trazina		μg/l	< 0,01	0,3
Metodo di analisi di riferimento: EPA 8270E				
	limite di quantificazione: 0,01		incertezza:	

Ordine dei CHIMICI e dei FISICI della Prov. di Treviso n° A093 Codice Fiscale GSTDRN42R12H823B P.IVA 01627660267 Via Pirzio Biroli n.1 - 31046 ODERZO (TV)

Triggiano, 23 ottobre 2020

Certificato n° 20LA33439

CERTIFICATO ANALISI

Alfa-esacioroesano		μg/l	< 0,01	0,1
Metodo di analisi di riferimento: EPA 8270E				•
limite di quantific	azione: 0,01		incertezza:	
				I
Beta-esacloroesano Metodo di analisi di riferimento: EPA 8270E		μg/l	< 0,01	0,1
Metodo di analisi di filerimento. EFA 6270E				
limite di quantific	azione: 0,01		incertezza:	
Gamma-esacloroesano (lindano)		μg/l	< 0,01	0,1
Metodo di analisi di riferimento: EPA 8270E		- 13	10,01	
limite di quantific	azione: 0,01		incertezza:	
				ı
Clordano Metodo di analisi di riferimento: EPA 8270E		μg/l	< 0,01	0,1
Metodo di analisi di riferimento: EPA 8270E				
limite di quantific	azione: 0,01		incertezza:	
DDD, DDT, DDE		μg/l	< 0,01	0,1
Metodo di analisi di riferimento: EPA 8270E		- 10	10,01	
limite di avantifi	oziona, 0.04		incertezza:	
limite di quantific	azione: 0,01		incertezza.	
Dieldrin		μg/l	< 0,003	0,03
Metodo di analisi di riferimento: EPA 8270E				·
limite di quantific	azione: 0,003		incertezza:	
Endrin		uall	< 0,01	0,1
Metodo di analisi di riferimento: EPA 8270E		μg/l	< 0,01	0,1
limite di quantific	azione: 0,01		incertezza:	
Sommatoria fitofarmaci (punto 86, tabella 2, alleg	gato 5, titolo V d. Lgs	μg/l	< 0,05	0,5
152/2006) Metodo di analisi di riferimento: EPA 8270E		F9/·	10,00	0,0
Model d'Ariano d'Ariannono. El Araction				
limite di quantific	azione: 0,05		incertezza:	
Clorpirifos		μg/l	< 0,1	
Metodo di analisi di riferimento: EPA 8270E			-,	
limite di quantific	azione: 0,1		incertezza:	
			ı	T
Dimetoato		μg/l	< 0,1	
Metodo di analisi di riferimento: EPA 8270E				
limite di quantific	azione: 0,1		incertezza:	
Deltametrina		μg/l	< 0,1	
Metodo di analisi di riferimento: EPA 8270E		ra,	* 0,1	
limite di quantific	azione: 0,1		incertezza:	

Ordine dei CHIMICI e dei FISICI della Prov. di Treviso n° A093 Codice Fiscale GSTDRN42R12H823B P.IVA 01627660267 Via Pirzio Biroli n.1 - 31046 ODERZO (TV)

Triggiano, 23 ottobre 2020

Certificato nº 20LA33439

CERTIFICATO ANALISI

(valido a tutti gli effetti come da D. L. n° 842/28)

Fention		μg/l	< 0,1	
Metodo di analisi di riferimento: EPA 8270E			· · · · · · · · · · · · · · · · · · ·	'
	limite di quantificazione: 0,1		incertezza:	
Oxifluorfen		μg/l	< 0,1	
Metodo di analisi di riferimento: EPA 8270E				, , , , , , , , , , , , , , , , , , ,
	limite di quantificazione: 0,1		incertezza:	
Paration		μg/l	< 0,1	
Metodo di analisi di riferimento: EPA 8270E				·
	limite di quantificazione: 0,1		incertezza:	
Simazina		μg/l	< 0,1	
Metodo di analisi di riferimento: EPA 8270E			•	·
	limite di quantificazione: 0,1		incertezza:	
Sommatoria pesticidi fosforati		μg/l	< 0,1	
Metodo di analisi di riferimento: EPA 8270E			•	•
	limite di quantificazione: 0,1		incertezza:	
PCB		μg/l	< 0,001	0,01
Metodo di analisi di riferimento: APAT CNR IRSA	5110 Man 29 2003			
	limite di quantificazione: 0,001		incertezza:	

Note:

La determinazione dei metalli è stata effettuata sul campione filtrato e acidificato. Nel calcolo della concentrazione degli elementi in traccia non viene considerato il recupero determinato dal laboratorio il quale risulta essere compreso tra 90 e 110 %.

L'incertezza di misura riportata nel presente certificato di analisi è espressa come incertezza estesa con un fattore di copertura (k) pari a 2 corrispondente a un livello di fiducia di circa 95%.

I risultati delle analisi si riferiscono ESCLUSIVAMENTE al campione esaminato; si declina ogni responsabilità nei casi di utilizzo del presente atto in difformità agli usi consentiti dalla Legge. Le analisi da eseguire sono state commissionate dal committente e dunque si declina ogni responsabilità in merito alla completezza delle informazioni.

Le analisi sono state eseguite dalla CHIMIE Srl e i LABORATORI ANALISI CHIMICHE DOTT. ADRIANO GIUSTO - SERVIZI AMBIENTE S.R.L., accreditato al n. 0128L, del gruppo LIFEANALYTICS.

Il chimico

Laboratorio Analisi Chimiche Dott. A. Giusto Servizi Ambiente S.r.I. - Chimie S.r.I. Gruppo LIFEANALYTICS

Tel. 0804621899 – info.chimie@lifeanalytics.it Laboratori Conformi alla norma UNI CEI EN ISO/IEC 17025:2018 Laboratori Certificati UNI EN ISO 9001:2015 e UNI EN ISO 14001:2015

Ordine dei CHIMICI e dei FISICI della Prov. di Treviso n° A093 Codice Fiscale GSTDRN42R12H823B P.IVA 01627660267 Via Pirzio Biroli n.1 - 31046 ODERZO (TV)

Triggiano, 23 ottobre 2020

Certificato n° 20LA33440

CERTIFICATO ANALISI

(valido a tutti gli effetti come da D. L. n° 842/28)

COMMITTENTE: FORMICA AMBIENTE srl - Via Groenlandia 47 - Roma

ETICHETTA: Campione di acqua di falda prelevato dal pozzo n° 8 della discarica per rifiuti non pericolosi sita in c.da Formica (BR)

Data ricezione campione: 23/09/20 Profondità della falda: 41,9 m

Il campione è stato prelevato dal tecnico dello studio CHIMIE Srl, P. Chim. G. Cipriano come da verbale nº 65/09

RISULTATI

PARAMETRO	unità di misura	valore determinato	D. Lgs. 152/06 Tab. 2 allegato 5 alla parte IV Titolo V
рН		7,04	
Metodo di analisi di riferimento: UNI EN ISO 10523:2012		<u> </u>	'
limite di quantificazione: > 1 e < 13		incertezza: ±	0,12
Temperatura	°C	20,6	
Metodo di analisi di riferimento: APAT CNR IRSA 2100 Man 29 2003			
limite di quantificazione: 1		incertezza: ±	0,2
Ossigeno disciolto	mg/l	5,11	
Metodo di analisi di riferimento: Strumentale - Sensore di Ossigeno Disciolto a luminescenza LDO			·
limite di quantificazione: 0,5		incertezza: ±	0,51
Potenziale Redox	mV	166,3	
Metodo di analisi di riferimento: Strumentale - Sensore ORP			·
limite di quantificazione: 10		incertezza: ±	16,6
Conducibilità	uS/cm a 20 °C	3640	
Metodo di analisi di riferimento: UNI EN 27888:1995		•	•
limite di quantificazione: 10		incertezza: ±	72,8
Ossidabilità O2	mg/l	0,63	
Metodo di analisi di riferimento: metodo Tritrimetrico (secondo Kubel), ISTISAN 07/31			•
limite di quantificazione: 0,5		incertezza: ±	0,05
Domanda biochimica di ossigeno (BOD5) a 20°C senza nitrificazione	mgO ₂ /I	< 0,5	
Metodo di analisi di riferimento: APAT CNR IRSA 5120 Man 29 2003			'
limite di quantificazione: 0,5		incertezza:	
Carbonio organico totale (TOC)	mg/l	0,3	
Metodo di analisi di riferimento: APAT CNR IRSA 5040 Man 29 2003			
limite di quantificazione: 0,1		incertezza: ±	0,1

Ordine dei CHIMICI e dei FISICI della Prov. di Treviso n° A093 Codice Fiscale GSTDRN42R12H823B P.IVA 01627660267 Via Pirzio Biroli n.1 - 31046 ODERZO (TV)

Triggiano, 23 ottobre 2020

Certificato n° 20LA33440

CERTIFICATO ANALISI

Ourezza totale	°F	74	
Metodo di analisi di riferimento: APAT CNR IRSA 2040 A Man 29 2003		<u> </u>	<u>'</u>
limite di quantificazione: 5		incertezza: ± 1	
ianuri	μg/l	<1	50
Metodo di analisi di riferimento: APAT CNR IRSA 4070 Man 29 2003			
limite di quantificazione: 1		incertezza:	
uoruri	mg/l	< 0,1	1,5
Metodo di analisi di riferimento: UNI EN ISO 10304-1:2009		,	I
limite di quantificazione: 0,1		incertezza:	
itriti come NO2		< F0	500
Metodo di analisi di riferimento: UNI EN ISO 10304-1:2009	μg/l	< 50	500
Wicked di dilandi di Midilinonio. Gri Elvico 1000 i 1.2000			
limite di quantificazione: 50		incertezza:	
olfati	mg/l	147	250
Metodo di analisi di riferimento: UNI EN ISO 10304-1:2009			
limite di mondificazione. O d			
limite di quantificazione: 0,1		incertezza: ± 15	
loruri	mg/l	975	
Metodo di analisi di riferimento: UNI EN ISO 10304-1:2009		·	•
limite di quantificazione: 0,1		incertezza: ± 97	,5
itrati come NO3	mg/l	15	
Metodo di analisi di riferimento: UNI EN ISO 10304-1:2009			
limite di quantificazione: 0,1		incertezza: ± 2	
mmoniaca come NH4	mg/l	< 0,05	
Metodo di analisi di riferimento: UNICHIM 2363:2009			'
limite di quantificazione: 0,05		incertezza:	
Illuminio Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016	μg/l	<1	200
Metodo di arialisi di meninerilo. Uni EN ISO 17294-2.2016			
limite di quantificazione: 1		incertezza:	
ntimonio	μg/l	< 0,3	5
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016		<u> </u>	I
limite di quantificazione: 0,3		incertezza:	
mino di quantinoazione. 0,0			
rgento	μg/l	< 1	10
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016			
limite di quantificazione: 1		incertezza:	

Ordine dei CHIMICI e dei FISICI della Prov. di Treviso n° A093 Codice Fiscale GSTDRN42R12H823B P.IVA 01627660267 Via Pirzio Biroli n.1 - 31046 ODERZO (TV)

Triggiano, 23 ottobre 2020

Certificato n° 20LA33440

CERTIFICATO ANALISI

Arsenico	μg/l	< 1	10
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016			
limite di quantificazione: 1		incertezza:	
Bario	 μg/l	46	
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016	μg/1	40	
limite di quantificazione: 1		incertezza: ± 5	
iimile di quantincazione. T		incertezza. £ 5	
Berillio	μg/I	< 0,3	4
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016			
limite di quantificazione: 0,3		incertezza:	
Boro		280	1000
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016	μg/l	200	1000
limite di quantificazione: 1		incertezza: ± 28	
Cadmio	μg/l	< 0,3	5
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016		!	!
limite di quantificazione: 0,3		incertezza:	
Calcio Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016	mg/l	133	
Metodo di arialisi di merimento. Oni EN 130-11294-2.2010			
limite di quantificazione: 0,001		incertezza: ± 13	
Cobalto	µg/l	< 1	50
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016		I	I
limite di quantificazione: 1		incertezza:	
a quantimentation :			
Cromo totale	μg/l	< 1	50
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016			
limite di quantificazione: 1		incertezza:	
Cromo esavalente	 μg/l	< 0,5	5
Metodo di analisi di riferimento: APAT CNR IRSA n° 3150 Man 29 2003	μg/1	< 0,5	
limite di quantificazione: 0,5		incertezza:	
erro	μg/l	< 1	200
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016		,	
limite di quantificazione: 1		incertezza:	
		1	
Magnesio Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016	mg/l	99	
MICLOGO OF A ATAINST OF THE PITTING THE TOTAL CONTROL OF THE PARTY OF			
limite di quantificazione: 0,001		incertezza: ± 10	

Ordine dei CHIMICI e dei FISICI della Prov. di Treviso n° A093 Codice Fiscale GSTDRN42R12H823B P.IVA 01627660267 Via Pirzio Biroli n.1 - 31046 ODERZO (TV)

Triggiano, 23 ottobre 2020

Certificato n° 20LA33440

CERTIFICATO ANALISI

Manganese	μg/l	< 1	50
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016			
limite di quantificazione: 1		incertezza:	
Manager 1		10.4	
Mercurio Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016	μg/l	< 0,1	1
motodo di dilandi di monnonto. Ora Elvico 1720 / 2.2010			
limite di quantificazione: 0,1		incertezza:	
Molibdeno	μg/l	8,8	
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016		,	I
limite di quantificazione: 1		incertezza: ± 0,9	
inne di quantinoazione. 1		mocrezza. 1 0,5	
Nichelio	μg/l	< 1	20
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016			
limite di quantificazione: 1		incertezza:	
Piombo		- 4	
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016	μg/l	< 1	10
motodo di dilandi di monimonto. Ora Elvico 1720 i 2.2010			
limite di quantificazione: 1		incertezza:	
Potassio	mg/l	22	
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016		I	L
limite di quantificazione: 0,001		incertezza: ± 2	
B	,,		1,000
Rame Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016	μg/l	< 1	1000
model of a rain of a rich month. One Elvide 17201 E.E.			
limite di quantificazione: 1		incertezza:	
Selenio	μg/l	< 0,3	10
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016		,	
limite di quantificazione: 0,3		incertezza:	
innie di quantineazione. 0,0		mocrtezza.	
Sodio	mg/l	618	
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016			
limite di quantificazione: 0,001		incertezza: ± 62	
04	,		
Stagno Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016	μg/l	<1	
limite di quantificazione: 1		incertezza:	
Tallio	μg/l	< 0,2	2
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016	F-9/.	3,=	
		innerto	
limite di quantificazione: 0,2		incertezza:	

Ordine dei CHIMICI e dei FISICI della Prov. di Treviso n° A093 Codice Fiscale GSTDRN42R12H823B P.IVA 01627660267 Via Pirzio Biroli n.1 - 31046 ODERZO (TV)

Triggiano, 23 ottobre 2020

Certificato n° 20LA33440

CERTIFICATO ANALISI

 Tellurio			< 1	
Metodo di analisi di riferimento: UNI EN ISO 1729	04-2:2016	μg/l	\$1	
	limite di quantificazione: 1		incertezza:	
/anadio		μg/l	2,8	
Metodo di analisi di riferimento: UNI EN ISO 1729	04-2:2016			I
	limite di quantificazione: 1		incertezza: ± 0,3	
	<u>'</u>			
Zinco		μg/l	< 1	3000
Metodo di analisi di riferimento: UNI EN ISO 1729	4-2:2016			
	limite di quantificazione: 1		incertezza:	
Benzene		μg/l	< 0,1	1
Metodo di analisi di riferimento: UNI EN ISO 15680	0:2005		7 0,1	
	F 11 F 15 T 24			
	limite di quantificazione: 0,1		incertezza:	
Etilbenzene		μg/l	< 0,1	50
Metodo di analisi di riferimento: UNI EN ISO 15680	0:2005			I
	limite di quantificazione: 0,1		incertezza:	
Stirene		μg/l	< 0,1	25
Metodo di analisi di riferimento: UNI EN ISO 15680	0:2005			
	limite di quantificazione: 0,1		incertezza:	
oluene		 μg/l	< 0,1	15
Metodo di analisi di riferimento: UNI EN ISO 15680	0:2005	μ9/1	× 0,1	10
	limite di quantificazione: 0,1		incertezza:	
-Xilene		μg/l	< 0,1	10
Metodo di analisi di riferimento: UNI EN ISO 15680	0:2005			I
	limite di quantificazione: 0,1		incertezza:	
	iiiiio di quantinoazione. 0,1		moortozza.	
Benzo(a)antracene		μg/I	< 0,01	0,1
Metodo di analisi di riferimento: EPA 8270E				
	limite di quantificazione: 0,01		incertezza:	
Benzo(a)pirene Metodo di analisi di riferimento: EPA 8270E		μg/l	< 0,001	0,01
MELOGO di ariansi di filefillierilo: EPA 82/UE				
	limite di quantificazione: 0,001		incertezza:	
Benzo(b)fluorantene		μg/l	< 0,01	0,1
Metodo di analisi di riferimento: EPA 8270E		H3/1	- 0,01	
	limite di quantificazione: 0,01		incertezza:	

Ordine dei CHIMICI e dei FISICI della Prov. di Treviso n° A093 Codice Fiscale GSTDRN42R12H823B P.IVA 01627660267 Via Pirzio Biroli n.1 - 31046 ODERZO (TV)

Triggiano, 23 ottobre 2020

Certificato n° 20LA33440

CERTIFICATO ANALISI

Benzo(k)fluorantene		μg/l	< 0,005	0,05
Metodo di analisi di riferimento: EPA 8270E				
limit	te di quantificazione: 0,005		incertezza:	
Benzo(g,h,i)perilene		μg/l	< 0,001	0,01
Metodo di analisi di riferimento: EPA 8270E				
limit	te di quantificazione: 0,001		incertezza:	
Crisene		μg/l	< 0,01	5
Metodo di analisi di riferimento: EPA 8270E		F9,.	10,01	
limit	te di quantificazione: 0,01		incertezza:	
Dibenzo(a,h)antracene		μg/l	< 0,001	0,01
Metodo di analisi di riferimento: EPA 8270E				ļ
limit	te di quantificazione: 0,001		incertezza:	
Indeno(1,2,3-c,d)pirene		μg/l	< 0,01	0,1
Metodo di analisi di riferimento: EPA 8270E				
limit	te di quantificazione: 0,01		incertezza:	
Pirene		ua/l	< 0.04	50
Metodo di analisi di riferimento: EPA 8270E		μg/l	< 0,01	50
limit	te di quantificazione: 0,01		incertezza:	
Sommatoria IPA (punto 38, tabella 2, allegato	5, titolo V d. Lgs 152/2006)	μg/l	< 0,01	0,1
Metodo di analisi di riferimento: EPA 8270E	,		,	<u> </u>
limit	te di quantificazione: 0,01		incertezza:	
""""	to a quantineazione. 0,01		incortezza.	
Clorometano		μg/l	< 0,1	1,5
Metodo di analisi di riferimento: UNI EN ISO 15680:2005				
limit	te di quantificazione: 0,1		incertezza:	
Cloroformio (triclorometano)		μg/l	< 0,01	0,15
Metodo di analisi di riferimento: UNI EN ISO 15680:2005				
limit	te di quantificazione: 0,01		incertezza:	
Olement distrib				
Cloruro di vinile Metodo di analisi di riferimento: UNI EN ISO 15680:2005		μg/l	< 0,05	0,5
microdo di analisi di meninetilo. UNI EN 130 13060.2005				
limit	te di quantificazione: 0,05		incertezza:	
1,2 - Dicloroetano		μg/l	< 0,1	3
Metodo di analisi di riferimento: UNI EN ISO 15680:2005		ra''	- 0,1	
limit	te di quantificazione: 0,1		incertezza:	

Ordine dei CHIMICI e dei FISICI della Prov. di Treviso n° A093 Codice Fiscale GSTDRN42R12H823B P.IVA 01627660267 Via Pirzio Biroli n.1 - 31046 ODERZO (TV)

Triggiano, 23 ottobre 2020

Certificato n° 20LA33440

CERTIFICATO ANALISI

,1 - Dicloroetilene	μg/l	0,135	0,05
Metodo di analisi di riferimento: UNI EN ISO 15680:2005		!	
limite di quantificazione: 0,005		incertezza: ± 0,020	
ricloroetilene	μg/l	< 0,1	1,5
Metodo di analisi di riferimento: UNI EN ISO 15680:2005	P9/1	70,1	1,0
limite di quantificazione: 0,1		incertezza:	
etracloroetilene	μg/l	0,15	1,1
Metodo di analisi di riferimento: UNI EN ISO 15680:2005		,	
limite di quantificazione: 0,1		incertezza: ± 0,02	
saclorobutadiene (HCBD)	μg/l	< 0,01	0,15
Metodo di analisi di riferimento: UNI EN ISO 15680:2005			I
limite di quantificazione: 0,01		incertezza:	
ommatoria organoalogenati (punto 47, tabella 2, allegato 5, titolo V d. Lgs	μg/l	< 1	10
52/2006) Metodo di analisi di riferimento: UNI EN ISO 15680:2005	P9/1		
limite di quantificazione: 1		incertezza:	
,1 - Dicloroetano	μg/l	0,29	810
Metodo di analisi di riferimento: UNI EN ISO 15680:2005			
limite di quantificazione: 0,1		incertezza: ± 0,04	
,2 - Dicloroetilene	μg/l	< 0,1	60
Metodo di analisi di riferimento: UNI EN ISO 15680:2005		-	
limite di quantificazione: 0,1		incertezza:	
,2 - Dicloropropano	μg/l	0,010	0,15
Metodo di analisi di riferimento: UNI EN ISO 15680:2005	P9/1	0,010	0,10
limite di quantificazione: 0,01		incertezza: ± 0,002	
1,2 - Tricloroetano	μg/l	< 0,01	0,2
Metodo di analisi di riferimento: UNI EN ISO 15680:2005	10	10,01	
limite di quantificazione: 0,01		incertezza:	
,2,3 - Tricloropropano	μg/l	< 0,001	0,001
Metodo di analisi di riferimento: UNI EN ISO 15680:2005		I	I
limite di quantificazione: 0,001		incertezza:	
,1,2,2 - Tetracloroetano	μg/l	< 0,005	0,05
Metodo di analisi di riferimento: UNI EN ISO 15680:2005	P9/1	- 0,000	0,00
limite di quantificazione: 0,005		incertezza:	
iiiiille di qualitiiloazione. 0,000		ii iooi tozza.	

Ordine dei CHIMICI e dei FISICI della Prov. di Treviso n° A093 Codice Fiscale GSTDRN42R12H823B P.IVA 01627660267 Via Pirzio Biroli n.1 - 31046 ODERZO (TV)

Triggiano, 23 ottobre 2020

Certificato n° 20LA33440

CERTIFICATO ANALISI

Tribromometano	μg/l	< 0,01	0,3
Metodo di analisi di riferimento: UNI EN ISO 15680:2005		'	!
limite di quantificazione: 0,01		incertezza:	
		1	
2 - Dibromoetano Metodo di analisi di riferimento: UNI EN ISO 15680:2005	μg/l	< 0,001	0,001
Wictors of affairs di frictimento. Gra Eta 100 10000.2000			
limite di quantificazione: 0,001		incertezza:	
ibromoclorometano	μg/l	< 0,01	0,13
Metodo di analisi di riferimento: UNI EN ISO 15680:2005			
limite di quantificazione: 0,01		incertezza:	
romodiclorometano	μg/l	< 0,01	0,17
Metodo di analisi di riferimento: UNI EN ISO 15680:2005	13	3,01	
limite di quantificazione: 0,01		incertezza:	
iiiiiie di quantinoazione. 0,01		mocrtezza.	
itrobenzene	μg/l	< 0,3	3,5
Metodo di analisi di riferimento: EPA 8260 rev 3 2006			
limite di quantificazione: 0,3		incertezza:	
2 - Dinitrobenzene	μg/l	< 0,3	15
Metodo di analisi di riferimento: EPA 8260 rev 3 2006		<u> </u>	
limite di quantificazione: 0,3		incertezza:	
3- dinitrobenzene	μg/l	< 0,3	3,7
Metodo di analisi di riferimento: EPA 8260 rev 3 2006		I	
limite di quantificazione: 0,3		incertezza:	
Ioronitrobenzeni (ognumo) Metodo di analisi di riferimento: EPA 8260 rev 3 2006	μg/l	< 0,05	0,5
welded at attails at the little into . Lt A 0200 feV 3 2000			
limite di quantificazione: 0,05		incertezza:	
onoclorobenzene	μg/l	< 0,1	40
Metodo di analisi di riferimento: UNI EN ISO 15680:2005		•	<u>'</u>
limite di quantificazione: 0,1		incertezza:	
2 - diclorobenzene	/!	< 0.1	070
Z - dictoropenzene Metodo di analisi di riferimento: UNI EN ISO 15680:2005	μg/l	< 0,1	270
limite di quantificazione: 0,1		incertezza:	
4 - diclorobenzene	μg/l	< 0,05	0,5
Metodo di analisi di riferimento: UNI EN ISO 15680:2005		1	I
limite di quantificazione: 0,05		incertezza:	
iiffile di quantificazione: U,U5		incertezza:	

Ordine dei CHIMICI e dei FISICI della Prov. di Treviso n° A093 Codice Fiscale GSTDRN42R12H823B P.IVA 01627660267 Via Pirzio Biroli n.1 - 31046 ODERZO (TV)

Triggiano, 23 ottobre 2020

Certificato n° 20LA33440

CERTIFICATO ANALISI

,2,4 - Triclorobenzene		μg/l	< 0,1	190
Metodo di analisi di riferimento: UNI EN ISO 1568	0:2005			
	limite di quantificazione: 0,1		incertezza:	
2.4.5. Totaloushamana			104	10
2,4,5 - Tetraclorobenzene Metodo di analisi di riferimento: EPA 8270E		µg/l	< 0,1	1,8
Motodo di dilanoi di monmonto. El 71 02102				
	limite di quantificazione: 0,1		incertezza:	
entaclorobenzene		μg/l	< 0,5	5
Metodo di analisi di riferimento: EPA 8270E				
	limite di quantificazione: 0,5		incertezza:	
saclorobenzene (HCB)		μg/l	< 0,001	0,01
Metodo di analisi di riferimento: EPA 8270E			l	
	limite di quantificazione: 0,001		incertezza:	
- clorofenolo		μg/l	<1	180
Metodo di analisi di riferimento: EPA 8270E		F9:		
	limite di quantificazione: 1		incertezza:	
,4 - Diclorofenolo		μg/l	< 1	110
Metodo di analisi di riferimento: EPA 8270E			-	'
	limite di quantificazione: 1		incertezza:	
,4,6 - Triclorofenolo		μg/l	< 0,5	5
Metodo di analisi di riferimento: EPA 8270E			-	
	limite di quantificazione: 0,5		incertezza:	
entaclorofenolo		μg/l	< 0,05	0,5
Metodo di analisi di riferimento: EPA 8270E		1-5.	1 0,00	
	limite di quantificazione: 0,05		incertezza:	
lacior		μg/l	< 0,01	0,1
Metodo di analisi di riferimento: EPA 8270E		ру/і	< 0,01	0,1
	limite di quantificazione: 0,01		incertezza:	
ldrin		P	4 0 000	0.00
Metodo di analisi di riferimento: EPA 8270E		μg/l	< 0,003	0,03
	limite di moneste con conce			
	limite di quantificazione: 0,003		incertezza:	
trazina		μg/l	< 0,01	0,3
Metodo di analisi di riferimento: EPA 8270E				
	limite di quantificazione: 0,01		incertezza:	

Ordine dei CHIMICI e dei FISICI della Prov. di Treviso nº A093 Codice Fiscale GSTDRN42R12H823B P.IVA 01627660267 Via Pirzio Biroli n.1 - 31046 ODERZO (TV)

Triggiano, 23 ottobre 2020

Certificato n° 20LA33440

CERTIFICATO ANALISI

Alfa-esacloroesano		μg/l	< 0,01	0,1
Metodo di analisi di riferimento: EPA 8270E			•	
limite o	di quantificazione: 0,01		incertezza:	
Beta-esacloroesano Metodo di analisi di riferimento: EPA 8270E		μg/l	< 0,01	0,1
Metodo di analisi di filetimento. EPA 6270E				
limite o	di quantificazione: 0,01		incertezza:	
Gamma-esacloroesano (lindano)		μg/l	< 0,01	0,1
Metodo di analisi di riferimento: EPA 8270E		15	7 0,0 1	
limite «	di quantificazione: 0,01		incertezza:	
Clordano Metodo di analisi di riferimento: EPA 8270E		µg/l	< 0,01	0,1
MELOGO DI ANANSI DI MEMMEMBO. EPA 8270E				
limite o	di quantificazione: 0,01		incertezza:	
DDD, DDT, DDE		μg/l	< 0,01	0,1
Metodo di analisi di riferimento: EPA 8270E			٠,٠.	
lionite.	ti quantificazione: 0.01		incertezza:	
limite (di quantificazione: 0,01		micertezza.	
Dieldrin		μg/l	< 0,003	0,03
Metodo di analisi di riferimento: EPA 8270E				·
limite (di quantificazione: 0,003		incertezza:	
Endrin		μg/l	< 0,01	0,1
Metodo di analisi di riferimento: EPA 8270E		<u>р</u> ул	\ 0,01	0,1
limite o	di quantificazione: 0,01		incertezza:	
Sommatoria fitofarmaci (punto 86, tabella 2	2, allegato 5, titolo V d. Lgs	μg/l	< 0,05	0,5
152/2006) Metodo di analisi di riferimento: EPA 8270E			, ,,,,	
limite	di quantificazione: 0,05		incertezza:	
Clorpirifos		μg/l	< 0,1	
Metodo di analisi di riferimento: EPA 8270E			,	I
limite o	di quantificazione: 0,1		incertezza:	
Dimotosta			ا م م د	I
Dimetoato Metodo di analisi di riferimento: EPA 8270E		μg/l	< 0,1	
The second secon				
limite o	di quantificazione: 0,1		incertezza:	
Deltametrina		μg/l	< 0,1	
Metodo di analisi di riferimento: EPA 8270E			-,-	
1:1a	di quantificazione: 0.1		incortezza	
limite	di quantificazione: 0,1		incertezza:	

Ordine dei CHIMICI e dei FISICI della Prov. di Treviso n° A093 Codice Fiscale GSTDRN42R12H823B P.IVA 01627660267 Via Pirzio Biroli n.1 - 31046 ODERZO (TV)

Triggiano, 23 ottobre 2020

Certificato n° 20LA33440

CERTIFICATO ANALISI

(valido a tutti gli effetti come da D. L. n° 842/28)

Fention		μg/l	< 0,1	
Metodo di analisi di riferimento: EPA 8270E				
	limite di quantificazione: 0,1		incertezza:	
				T
Oxifluorfen		μg/l	< 0,1	
Metodo di analisi di riferimento: EPA 8270E				
	limite di quantificazione: 0,1		incertezza:	
Paration		μg/l	< 0,1	
Metodo di analisi di riferimento: EPA 8270E			'	1
	limite di quantificazione: 0,1		incertezza:	
Simazina		μg/l	< 0,1	
Metodo di analisi di riferimento: EPA 8270E				
	limite di quantificazione: 0,1		incertezza:	
Sommatoria pesticidi fosforati		μg/l	< 0,1	
Metodo di analisi di riferimento: EPA 8270E				1
	limite di quantificazione: 0,1		incertezza:	
PCB		μg/l	< 0,001	0,01
Metodo di analisi di riferimento: APAT CNR IRS	A 5110 Man 29 2003		•	
	limite di quantificazione: 0,001		incertezza:	

Note:

La determinazione dei metalli è stata effettuata sul campione filtrato e acidificato. Nel calcolo della concentrazione degli elementi in traccia non viene considerato il recupero determinato dal laboratorio il quale risulta essere compreso tra 90 e 110 %.

L'incertezza di misura riportata nel presente certificato di analisi è espressa come incertezza estesa con un fattore di copertura (k) pari a 2 corrispondente a un livello di fiducia di circa 95%.

I risultati delle analisi si riferiscono ESCLUSIVAMENTE al campione esaminato; si declina ogni responsabilità nei casi di utilizzo del presente atto in difformità agli usi consentiti dalla Legge. Le analisi da eseguire sono state commissionate dal committente e dunque si declina ogni responsabilità in merito alla completezza delle informazioni.

Le analisi sono state eseguite dalla CHIMIE Srl e i LABORATORI ANALISI CHIMICHE DOTT. ADRIANO GIUSTO - SERVIZI AMBIENTE S.R.L., accreditato al n. 0128L, del gruppo LIFEANALYTICS.

Il chimico

Laboratorio Analisi Chimiche Dott. A. Giusto Servizi Ambiente S.r.I. - Chimie S.r.I. Gruppo LIFEANALYTICS

Tel. 0804621899 – info.chimie@lifeanalytics.it
Laboratori Conformi alla norma UNI CEI EN ISO/IEC 17025:2018
Laboratori Certificati UNI EN ISO 9001:2015 e UNI EN ISO 14001:2015

Ordine dei CHIMICI e dei FISICI della Prov. di Treviso n° A093 Codice Fiscale GSTDRN42R12H823B P.IVA 01627660267 Via Pirzio Biroli n.1 - 31046 ODERZO (TV)

Triggiano, 23 ottobre 2020

Certificato n° 20LA33441

CERTIFICATO ANALISI

(valido a tutti gli effetti come da D. L. n° 842/28)

COMMITTENTE: FORMICA AMBIENTE srl - Via Groenlandia 47 - Roma

ETICHETTA: Campione di acqua di falda prelevato dal pozzo n° **10** della discarica per rifiuti non pericolosi sita in c.da Formica (BR)

Data ricezione campione: 23/09/20 Profondità della falda: 44,4 m

Il campione è stato prelevato dal tecnico dello studio CHIMIE Srl, P. Chim. G. Cipriano come da verbale nº 65/09

RISULTATI

PARAMETRO	unità di misura	valore determinato	D. Lgs. 152/06 Tab. 2 allegato 5 alla parte IV Titolo V
рН		7,01	
Metodo di analisi di riferimento: UNI EN ISO 10523:2012			
limite di quantificazione: > 1 e < 13		incertezza: ±	0,12
Temperatura	°C	19,7	
Metodo di analisi di riferimento: APAT CNR IRSA 2100 Man 29 2003			·
limite di quantificazione: 1		incertezza: ±	0,2
Ossigeno disciolto	mg/l	5,06	
Metodo di analisi di riferimento: Strumentale - Sensore di Ossigeno Disciolto a luminescenza LDO			·
limite di quantificazione: 0,5		incertezza: ±	0,51
Potenziale Redox	mV	130,0	
Metodo di analisi di riferimento: Strumentale - Sensore ORP			
limite di quantificazione: 10		incertezza: ±	13,0
Conducibilità	uS/cm a 20 °C	2950	
Metodo di analisi di riferimento: UNI EN 27888:1995			•
limite di quantificazione: 10		incertezza: ±	59
Ossidabilità O2	mg/l	< 0,5	
Metodo di analisi di riferimento: metodo Tritrimetrico (secondo Kubel), ISTISAN 07/31			•
limite di quantificazione: 0,5		incertezza:	
Domanda biochimica di ossigeno (BOD5) a 20°C senza nitrificazione	mgO ₂ /I	< 0,5	
Metodo di analisi di riferimento: APAT CNR IRSA 5120 Man 29 2003			
limite di quantificazione: 0,5		incertezza:	
Carbonio organico totale (TOC)	mg/l	< 0,1	
Metodo di analisi di riferimento: APAT CNR IRSA 5040 Man 29 2003			1
limite di quantificazione: 0,1		incertezza:	

Ordine dei CHIMICI e dei FISICI della Prov. di Treviso n° A093 Codice Fiscale GSTDRN42R12H823B P.IVA 01627660267 Via Pirzio Biroli n.1 - 31046 ODERZO (TV)

Triggiano, 23 ottobre 2020

Certificato n° 20LA33441

CERTIFICATO ANALISI

Durezza totale	° F	63	
Metodo di analisi di riferimento: APAT CNR IRSA 2040 A Man 29 2003			'
limite di quantificazione:	5	incertezza: ± 1	1
ianuri	μg/l	< 1	50
Metodo di analisi di riferimento: APAT CNR IRSA 4070 Man 29 2003			
limite di quantificazione:	1	incertezza:	
			1
luoruri Metodo di analisi di riferimento: UNI EN ISO 10304-1:2009	mg/l	0,32	1,5
Metodo di analisi di riferimento: ONI EN 150 10304-1:2009			
limite di quantificazione:	0,1	incertezza: ± (0,03
itriti come NO2	μg/l	< 50	500
Metodo di analisi di riferimento: UNI EN ISO 10304-1:2009	д	1 00	000
limite di quantificazione:	50	incertezza:	
olfati	mg/l	112	250
Metodo di analisi di riferimento: UNI EN ISO 10304-1:2009			
limite di quantificazione:	0,1	incertezza: ± 1	11
loruri	mg/l	692	
Metodo di analisi di riferimento: UNI EN ISO 10304-1:2009			l
limite di quantificazione:	0.1	incertezza: ± 6	20.2
iimite urquantincazione.	0,1	incertezza. ± t	J9,2
itrati come NO3	mg/l	15	
Metodo di analisi di riferimento: UNI EN ISO 10304-1:2009			•
limite di quantificazione:	0.1	incertezza: ± 2	2
<u>'</u>			
mmoniaca come NH4	mg/l	< 0,05	
Metodo di analisi di riferimento: UNICHIM 2363:2009			
limite di quantificazione:	0,05	incertezza:	
			I
Illuminio	μg/l	1,1	200
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016			
limite di quantificazione:	1	incertezza: ± (0,1
ntimonio			
Antimonio Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016	μg/l	< 0,3	5
motodo di difuliali di filorimonio. Otti EN 100 172372.2010			
limite di quantificazione:	0,3	incertezza:	
rgente	n	< 1	10
Argento Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016	µg/I	8.1	10
limite di quantificazione:	1	incertezza:	

Ordine dei CHIMICI e dei FISICI della Prov. di Treviso n° A093 Codice Fiscale GSTDRN42R12H823B P.IVA 01627660267 Via Pirzio Biroli n.1 - 31046 ODERZO (TV)

Triggiano, 23 ottobre 2020

Certificato n° 20LA33441

CERTIFICATO ANALISI

Arsenico		μg/l	< 1	10
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016				
limite di qu	uantificazione: 1		incertezza:	
Pavia		//	24	
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016		μg/l	34	
limite di qu	uantificazione: 1		incertezza: ± 3	
Berillio		μg/l	< 0,3	4
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016			- 1	
limite di ai	uantificazione: 0,3		incertezza:	
iiiiio a q				
Boro		μg/l	204	1000
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016				
limite di qu	uantificazione: 1		incertezza: ± 20	
Cadmio		//	< 0,3	5
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016		μg/l	< 0,3	5
limite di qu	uantificazione: 0,3		incertezza:	
Calcio		mg/l	127	
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016			l	I
limite di qu	uantificazione: 0,001		incertezza: ± 13	
Cobalto		μg/l	< 1	50
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016				
limite di qu	uantificazione: 1		incertezza:	
Cromo totale		uall	< 1	50
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016		μg/l	× 1	30
limite di qu	uantificazione: 1		incertezza:	
Cromo esavalente		μg/l	< 0,5	5
Metodo di analisi di riferimento: APAT CNR IRSA n° 3150 Man 29 2	003		<u>- 1</u>	l
limite di a	uantificazione: 0,5		incertezza:	
	·			
erro		μg/l	< 1	200
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016				
limite di qu	uantificazione: 1		incertezza:	
			76	
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016		mg/l	10	
limite di qu	uantificazione: 0,001		incertezza: ± 8	

Ordine dei CHIMICI e dei FISICI della Prov. di Treviso n° A093 Codice Fiscale GSTDRN42R12H823B P.IVA 01627660267 Via Pirzio Biroli n.1 - 31046 ODERZO (TV)

Triggiano, 23 ottobre 2020

Certificato n° 20LA33441

CERTIFICATO ANALISI

Manganese	μg/l	< 1	50
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016		·	'
limite di quantificazione: 1		incertezza:	
			T
lercurio	μg/l	< 0,1	1
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016			
limite di quantificazione: 0,1		incertezza:	
Molibdeno	μg/l	6,9	
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016		0,0	
limite di quantificazione: 1		incertezza: ±	0,7
lichelio	μg/l	< 1	20
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016			l l
limite di quantificazione: 1		incertezza:	
			I
liombo	μg/l	< 1	10
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016			
limite di quantificazione: 1		incertezza:	
Potassio	mg/l	17	
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016	mg/i	17	
			•
limite di quantificazione: 0,001		incertezza: ±	2
Rame	μg/l	<1	1000
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016			•
limite di quantificazione: 1		incertezza:	
		[
delenio	μg/l	< 0,3	10
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016			
limite di quantificazione: 0,3		incertezza:	
odio	mg/l	479	
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016	9	410	
F 1 F F F O O			40
limite di quantificazione: 0,001		incertezza: ±	40
itagno	μg/l	< 1	
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016			<u> </u>
limite di quantificazione: 1		incertezza:	
		ı	Ι
allio	μg/l	< 0,2	2
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016			
limite di quantificazione: 0,2		incertezza:	

Ordine dei CHIMICI e dei FISICI della Prov. di Treviso n° A093 Codice Fiscale GSTDRN42R12H823B P.IVA 01627660267 Via Pirzio Biroli n.1 - 31046 ODERZO (TV)

Triggiano, 23 ottobre 2020

Certificato n° 20LA33441

CERTIFICATO ANALISI

Tellurio		μg/l	< 1	
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2	2016			
	limite di quantificazione: 1		incertezza:	
Vanadio			2.2	
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2	2016	μg/l	2,3	
	limite di quantificazione: 1		incertezza: ± 0,2	
Zinco		<u>μ</u> g/l	< 1	3000
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2	2016		I	I
	limite di quantificazione: 1		incertezza:	
	iiiiiic di quantineazione.		mocrtezza.	
Benzene		μg/l	< 0,1	1
Metodo di analisi di riferimento: UNI EN ISO 15680:200	05			
	limite di quantificazione: 0,1		incertezza:	
Etilbenzene Metodo di analisi di riferimento: UNI EN ISO 15680:200	06	μg/l	< 0,1	50
Metodo di analisi di Illerillerito. Olvi Elv 130 13000.200				
	limite di quantificazione: 0,1		incertezza:	
Stirene		μg/l	< 0,1	25
Metodo di analisi di riferimento: UNI EN ISO 15680:200	05	F-9··	3,1	
	F 1 F - 15 - 0.4			
	limite di quantificazione: 0,1		incertezza:	
Toluene		μg/l	< 0,1	15
Metodo di analisi di riferimento: UNI EN ISO 15680:200	05		·	
	limite di quantificazione: 0,1		incertezza:	
				I
p-Xilene Metodo di analisi di riferimento: UNI EN ISO 15680:200	05	μg/l	< 0,1	10
Metodo di analisi di riferimento: UNI EN ISO 15660:200	<i></i>			
	limite di quantificazione: 0,1		incertezza:	
Benzo(a)antracene		μg/l	< 0,01	0,1
Metodo di analisi di riferimento: EPA 8270E		р у, г	4 0,01	0,1
	limite di quantificazione: 0,01		incertezza:	
Benzo(a)pirene		μg/l	< 0,001	0,01
Metodo di analisi di riferimento: EPA 8270E			· · · · · · · · · · · · · · · · · · ·	
	limite di quantificazione: 0,001		incertezza:	
	· · · · · · · · · · · · · · · · · · ·			I
Benzo(b)fluorantene		μg/l	< 0,01	0,1
Metodo di analisi di riferimento: EPA 8270E				
	limite di quantificazione: 0,01		incertezza:	

Ordine dei CHIMICI e dei FISICI della Prov. di Treviso n° A093 Codice Fiscale GSTDRN42R12H823B P.IVA 01627660267 Via Pirzio Biroli n.1 - 31046 ODERZO (TV)

Triggiano, 23 ottobre 2020

Certificato n° 20LA33441

CERTIFICATO ANALISI

			ı	ı
Benzo(k)fluorantene		μg/l	< 0,005	0,05
Metodo di analisi di riferimento: EPA 8270E				
limite di q	uantificazione: 0,005		incertezza:	
Daniel de Nacelles			10.004	
Benzo(g,h,i)perilene Metodo di analisi di riferimento: EPA 8270E		μg/l	< 0,001	0,01
Metodo di analisi di menmento. El A 0270E				
limite di q	uantificazione: 0,001		incertezza:	
Crisene		<u>μ</u> g/l	< 0,01	5
Metodo di analisi di riferimento: EPA 8270E			2,2 1	<u> </u>
limita di a	uantificazione: 0,01		incertezza:	
iii iiie ui q	dantinicazione. 0,01		incertezza.	
Dibenzo(a,h)antracene		μg/l	< 0,001	0,01
Metodo di analisi di riferimento: EPA 8270E				
limite di q	uantificazione: 0,001		incertezza:	
ndeno(1,2,3-c,d)pirene		μg/l	< 0,01	0,1
Metodo di analisi di riferimento: EPA 8270E				
limite di q	uantificazione: 0,01		incertezza:	
Pirene		μg/l	< 0,01	50
Metodo di analisi di riferimento: EPA 8270E		дул	< 0,01	30
limite di q	uantificazione: 0,01		incertezza:	
Sommatoria IPA (punto 38, tabella 2, allegato 5, t	itolo V d. Lgs 152/2006)	μg/l	< 0,01	0,1
Metodo di analisi di riferimento: EPA 8270E			'	<u>'</u>
limite di q	uantificazione: 0,01		incertezza:	
			1	
Clorometano		μg/l	< 0,1	1,5
Metodo di analisi di riferimento: UNI EN ISO 15680:2005				
limite di q	uantificazione: 0,1		incertezza:	
Cloroformio (triclorometano)		μg/l	< 0,01	0,15
Metodo di analisi di riferimento: UNI EN ISO 15680:2005				
limite di q	uantificazione: 0,01		incertezza:	
Name alledella			10.05	
Cloruro di vinile Metodo di analisi di riferimento: UNI EN ISO 15680:2005		μg/l	< 0,05	0,5
limite di q	uantificazione: 0,05		incertezza:	
I,2 - Dicloroetano		μg/l	< 0,1	3
Metodo di analisi di riferimento: UNI EN ISO 15680:2005		ra''	- 0,1	
limite di q	uantificazione: 0,1		incertezza:	

Ordine dei CHIMICI e dei FISICI della Prov. di Treviso n° A093 Codice Fiscale GSTDRN42R12H823B P.IVA 01627660267 Via Pirzio Biroli n.1 - 31046 ODERZO (TV)

Triggiano, 23 ottobre 2020

Certificato n° 20LA33441

CERTIFICATO ANALISI

,1 - Dicloroetilene	μg/l	0,014	0,05
Metodo di analisi di riferimento: UNI EN ISO 15680:2005		'	!
limite di quantificazione: 0,005		incertezza: ± 0,002	
ricloroetilene	ug/l	< 0.1	1,5
Metodo di analisi di riferimento: UNI EN ISO 15680:2005	μg/l	< 0,1	1,5
limite di quantificazione: 0,1		incertezza:	
			I
etracloroetilene Metodo di analisi di riferimento: UNI EN ISO 15680:2005	μg/l	< 0,1	1,1
		incorto	
limite di quantificazione: 0,1		incertezza:	
saclorobutadiene (HCBD)	μg/l	< 0,01	0,15
Metodo di analisi di riferimento: UNI EN ISO 15680:2005			
limite di quantificazione: 0,01		incertezza:	
commatoria organoalogenati (punto 47, tabella 2, allegato 5, titolo V d. Lgs	μg/l	< 1	10
52/2006) Metodo di analisi di riferimento: UNI EN ISO 15680:2005	μ9/1		10
Metodo di analisi di riferimento. Uni EN ISO 15060.2005			
limite di quantificazione: 1		incertezza:	
,1 - Dicloroetano	μg/l	< 0,1	810
Metodo di analisi di riferimento: UNI EN ISO 15680:2005		· · · · · · · · · · · · · · · · · · ·	I
limite di quantificazione: 0,1		incertezza:	
,2 - Dicloroetilene	μg/l	< 0,1	60
Metodo di analisi di riferimento: UNI EN ISO 15680:2005		10,1	
limite di quantificazione: 0,1		incertezza:	
			T
,2 - Dicloropropano	μg/l	< 0,01	0,15
Metodo di analisi di riferimento: UNI EN ISO 15680:2005			
limite di quantificazione: 0,01		incertezza:	
,1,2 - Tricloroetano	μg/l	< 0,01	0,2
Metodo di analisi di riferimento: UNI EN ISO 15680:2005			I
limite di quantificazione: 0,01		incertezza:	
,2,3 - Tricloropropano	μg/l	< 0,001	0,001
Metodo di analisi di riferimento: UNI EN ISO 15680:2005	. •	-,	
limite di quantificazione: 0,001		incertezza:	
		1	I
,1,2,2 - Tetracloroetano Metodo di analisi di riferimento: UNI EN ISO 15680:2005	μg/l	< 0,005	0,05
limite di quantificazione: 0,005		incertezza:	

Ordine dei CHIMICI e dei FISICI della Prov. di Treviso n° A093 Codice Fiscale GSTDRN42R12H823B P.IVA 01627660267 Via Pirzio Biroli n.1 - 31046 ODERZO (TV)

Triggiano, 23 ottobre 2020

Certificato n° 20LA33441

CERTIFICATO ANALISI

ribromometano	μg/l	< 0,01	0,3
Metodo di analisi di riferimento: UNI EN ISO 15680:2005	13	3,01	
limite di quantificazione: 0,01		incertezza:	
iiinite di quantineazione. 0,01		mocrtezza.	
,2 - Dibromoetano	μg/l	< 0,001	0,001
Metodo di analisi di riferimento: UNI EN ISO 15680:2005			
limite di quantificazione: 0,001		incertezza:	
ibromoclorometano	μg/l	< 0,01	0,13
Metodo di analisi di riferimento: UNI EN ISO 15680:2005		'	'
limite di quantificazione: 0,01		incertezza:	
Bromodiclorometano	μg/l	< 0,01	0,17
Metodo di analisi di riferimento: UNI EN ISO 15680:2005		·	
limite di quantificazione: 0,01		incertezza:	
litrobenzene	μg/l	< 0,3	3,5
Metodo di analisi di riferimento: EPA 8260 rev 3 2006	рул	\(\mathcal{0}\)	3,5
limite di quantificazione: 0,3		incertezza:	
,2 - Dinitrobenzene	μg/l	< 0,3	15
Metodo di analisi di riferimento: EPA 8260 rev 3 2006			•
limite di quantificazione: 0,3		incertezza:	
,3- dinitrobenzene	μg/l	< 0,3	3,7
Metodo di analisi di riferimento: EPA 8260 rev 3 2006			
limite di quantificazione: 0,3		incertezza:	
Cloronitrobenzeni (ognumo) Metodo di analisi di riferimento: EPA 8260 rev 3 2006	μg/l	< 0,05	0,5
Metodo di analisi di Menmento. EFA 6200 lev 3 2000			
limite di quantificazione: 0,05		incertezza:	
lonoclorobenzene	μg/l	< 0,1	40
Metodo di analisi di riferimento: UNI EN ISO 15680:2005		'	'
limite di quantificazione: 0,1		incertezza:	
,2 - diclorobenzene	"	< 0.1	070
Metodo di analisi di riferimento: UNI EN ISO 15680:2005	µg/l	< 0,1	270
		incortozza	
limite di quantificazione: 0,1		incertezza:	
,4 - diclorobenzene	μg/l	< 0,05	0,5
Metodo di analisi di riferimento: UNI EN ISO 15680:2005			
limite di quantificazione: 0,05	<u> </u>	incertezza:	

Ordine dei CHIMICI e dei FISICI della Prov. di Treviso n° A093 Codice Fiscale GSTDRN42R12H823B P.IVA 01627660267 Via Pirzio Biroli n.1 - 31046 ODERZO (TV)

Triggiano, 23 ottobre 2020

Certificato n° 20LA33441

CERTIFICATO ANALISI

,2,4 - Triclorobenzene		μg/l	< 0,1	190
Metodo di analisi di riferimento: UNI EN ISO 1568	0:2005		<u> </u>	•
	limite di quantificazione: 0,1		incertezza:	
		_		1
2,4,5 - Tetraclorobenzene Metodo di analisi di riferimento: EPA 8270E		μg/l	< 0,1	1,8
Metodo di analisi di Menmento. EPA 6270E				
	limite di quantificazione: 0,1		incertezza:	
entaclorobenzene		μg/l	< 0,5	5
Metodo di analisi di riferimento: EPA 8270E			'	'
	limite di quantificazione: 0,5		incertezza:	
saclorobenzene (HCB)		μg/l	< 0,001	0,01
Metodo di analisi di riferimento: EPA 8270E				
	limite di quantificazione: 0,001		incertezza:	
- clorofenolo		μg/l	< 1	180
Metodo di analisi di riferimento: EPA 8270E		F97.	* 1	
	limite di quantificazione: 1		incertezza:	
4 - Diclorofenolo		μg/l	< 1	110
Metodo di analisi di riferimento: EPA 8270E				
	limite di quantificazione: 1		incertezza:	
4,6 - Triclorofenolo		μg/l	< 0,5	5
Metodo di analisi di riferimento: EPA 8270E				
	limite di quantificazione: 0,5		incertezza:	
entaclorofenolo		μg/l	< 0,05	0,5
Metodo di analisi di riferimento: EPA 8270E		13	3,60	.,.
	limite di quantificazione: 0,05		incertezza:	
laclor		μg/l	< 0,01	0,1
Metodo di analisi di riferimento: EPA 8270E			- 0,01	
	limite di quantificazione: 0,01		incertezza:	
ldrin		μg/l	< 0,003	0,03
Metodo di analisi di riferimento: EPA 8270E		L9.,	,	1 2,00
	limite di quantificazione: 0,003		incertezza:	
function a			10.04	
trazina Metodo di analisi di riferimento: EPA 8270E		µg/l	< 0,01	0,3
stodd di didaidi di incinicino. Li A 0210E				
	limite di quantificazione: 0,01		incertezza:	

Ordine dei CHIMICI e dei FISICI della Prov. di Treviso n° A093 Codice Fiscale GSTDRN42R12H823B P.IVA 01627660267 Via Pirzio Biroli n.1 - 31046 ODERZO (TV)

Triggiano, 23 ottobre 2020

Certificato n° 20LA33441

CERTIFICATO ANALISI

			T
Alfa-esacioroesano	μg/l	< 0,01	0,1
Metodo di analisi di riferimento: EPA 8270E			
limite di quantificazione: 0,01		incertezza:	
Beta-esacloroesano		1004	0.4
Metodo di analisi di riferimento: EPA 8270E	μg/l	< 0,01	0,1
, , , , , , , , , , , , , , , , , , ,			
limite di quantificazione: 0,01		incertezza:	
Gamma-esacloroesano (lindano)	μg/l	< 0,01	0,1
Metodo di analisi di riferimento: EPA 8270E		,	
limite di quantificazione: 0,01		incertezza:	
Clordano	ug/l	< 0,01	0,1
Metodo di analisi di riferimento: EPA 8270E	μg/l	~ 0,0 I	0,1
limite di quantificazione: 0,01		incertezza:	
DDD, DDT, DDE	μg/l	< 0,01	0,1
Metodo di analisi di riferimento: EPA 8270E			
limite di quantificazione: 0,01		incertezza:	
Dieldrin	μg/l	< 0,003	0,03
Metodo di analisi di riferimento: EPA 8270E			
limite di quantificazione: 0,003		incertezza:	
Endrin	μg/l	< 0,01	0,1
Metodo di analisi di riferimento: EPA 8270E	P9,.	30,01	<u> </u>
limite di quantificazione: 0,01		incertezza:	
Sommatoria fitofarmaci (punto 86, tabella 2, allegato 5, titolo V d. Lgs	μg/l	< 0,05	0,5
152/2006) Metodo di analisi di riferimento: EPA 8270E		,	
limite di quantificazione: 0,05		incertezza:	
Clorpirifos	μg/l	< 0,1	
Metodo di analisi di riferimento: EPA 8270E			
limite di quantificazione: 0,1		incertezza:	
Dimetoato FDA 00325	μg/l	< 0,1	
Metodo di analisi di riferimento: EPA 8270E			
limite di quantificazione: 0,1		incertezza:	
Deltametrina	μg/l	< 0,1	
Metodo di analisi di riferimento: EPA 8270E	µу/і	~ 0, 1	
limite di quantificazione: 0,1		incertezza:	

Ordine dei CHIMICI e dei FISICI della Prov. di Treviso n° A093 Codice Fiscale GSTDRN42R12H823B P.IVA 01627660267 Via Pirzio Biroli n.1 - 31046 ODERZO (TV)

Triggiano, 23 ottobre 2020

Certificato n° 20LA33441

CERTIFICATO ANALISI

(valido a tutti gli effetti come da D. L. n° 842/28)

Fention		μg/l	< 0,1	
Metodo di analisi di riferimento: EPA 8270E				
	limite di quantificazione: 0,1		incertezza:	
				T
Oxifluorfen		μg/l	< 0,1	
Metodo di analisi di riferimento: EPA 8270E				
	limite di quantificazione: 0,1		incertezza:	
Paration		μg/l	< 0,1	
Metodo di analisi di riferimento: EPA 8270E			'	1
	limite di quantificazione: 0,1		incertezza:	
Simazina		μg/l	< 0,1	
Metodo di analisi di riferimento: EPA 8270E				
	limite di quantificazione: 0,1		incertezza:	
Sommatoria pesticidi fosforati		μg/l	< 0,1	
Metodo di analisi di riferimento: EPA 8270E				1
	limite di quantificazione: 0,1		incertezza:	
PCB		μg/l	< 0,001	0,01
Metodo di analisi di riferimento: APAT CNR IRS	A 5110 Man 29 2003		•	
	limite di quantificazione: 0,001		incertezza:	

Note:

La determinazione dei metalli è stata effettuata sul campione filtrato e acidificato. Nel calcolo della concentrazione degli elementi in traccia non viene considerato il recupero determinato dal laboratorio il quale risulta essere compreso tra 90 e 110 %.

L'incertezza di misura riportata nel presente certificato di analisi è espressa come incertezza estesa con un fattore di copertura (k) pari a 2 corrispondente a un livello di fiducia di circa 95%.

I risultati delle analisi si riferiscono ESCLUSIVAMENTE al campione esaminato; si declina ogni responsabilità nei casi di utilizzo del presente atto in difformità agli usi consentiti dalla Legge. Le analisi da eseguire sono state commissionate dal committente e dunque si declina ogni responsabilità in merito alla completezza delle informazioni.

Le analisi sono state eseguite dalla CHIMIE Srl e i LABORATORI ANALISI CHIMICHE DOTT. ADRIANO GIUSTO - SERVIZI AMBIENTE S.R.L., accreditato al n. 0128L, del gruppo LIFEANALYTICS.

Il chimico

Laboratorio Analisi Chimiche Dott. A. Giusto Servizi Ambiente S.r.l. - Chimie S.r.l. Gruppo LIFEANALYTICS

Tel. 0804621899 – info.chimie@lifeanalytics.it Laboratori Conformi alla norma UNI CEI EN ISO/IEC 17025:2018 Laboratori Certificati UNI EN ISO 9001:2015 e UNI EN ISO 14001:2015

Ordine dei CHIMICI e dei FISICI della Prov. di Treviso n° A093 Codice Fiscale GSTDRN42R12H823B P.IVA 01627660267 Via Pirzio Biroli n.1 - 31046 ODERZO (TV)

Triggiano, 23 ottobre 2020

Certificato n° 20LA33442

CERTIFICATO ANALISI

(valido a tutti gli effetti come da D. L. n° 842/28)

COMMITTENTE: FORMICA AMBIENTE srl - Via Groenlandia 47 - Roma

ETICHETTA: Campione di acqua di falda prelevato dal pozzo n° **PE1** della discarica per rifiuti non pericolosi sita in c.da Formica (BR)

Data ricezione campione: 23/09/20 Profondità della falda: 44,7 m

Il campione è stato prelevato dal tecnico dello studio CHIMIE Srl, P. Chim. G. Cipriano come da verbale nº 65/09

RISULTATI

PARAMETRO	unità di misura	valore determinato	D. Lgs. 152/06 Tab. 2 allegato 5 alla parte IV Titolo V
рН		6,98	
Metodo di analisi di riferimento: UNI EN ISO 10523:2012			
limite di quantificazione: > 1 e < 13		incertezza: ±	0,12
Temperatura	°C	19,2	
Metodo di analisi di riferimento: APAT CNR IRSA 2100 Man 29 2003			•
limite di quantificazione: 1		incertezza: ±	0,2
Ossigeno disciolto	mg/l	4,78	
Metodo di analisi di riferimento: Strumentale - Sensore di Ossigeno Disciolto a luminescenza LDO		,	•
limite di quantificazione: 0,5		incertezza: ±	0,48
Potenziale Redox	mV	207,0	
Metodo di analisi di riferimento: Strumentale - Sensore ORP			·
limite di quantificazione: 10		incertezza: ±	20,7
Conducibilità	uS/cm a 20 °C	3610	
Metodo di analisi di riferimento: UNI EN 27888:1995			•
limite di quantificazione: 10		incertezza: ±	72,2
Ossidabilità O2	mg/l	< 0,5	
Metodo di analisi di riferimento: metodo Tritrimetrico (secondo Kubel), ISTISAN 07/31			•
limite di quantificazione: 0,5		incertezza:	
Domanda biochimica di ossigeno (BOD5) a 20°C senza nitrificazione	mgO ₂ /l	< 0,5	
Metodo di analisi di riferimento: APAT CNR IRSA 5120 Man 29 2003		-	
limite di quantificazione: 0,5		incertezza:	
Carbonio organico totale (TOC)	mg/l	0,1	
Metodo di analisi di riferimento: APAT CNR IRSA 5040 Man 29 2003		I	1
limite di quantificazione: 0,1		incertezza:	

Ordine dei CHIMICI e dei FISICI della Prov. di Treviso n° A093 Codice Fiscale GSTDRN42R12H823B P.IVA 01627660267 Via Pirzio Biroli n.1 - 31046 ODERZO (TV)

Triggiano, 23 ottobre 2020

Certificato n° 20LA33442

CERTIFICATO ANALISI

Durezza totale	° F	73	
Metodo di analisi di riferimento: APAT CNR IRSA 2040 A Man 29 2003			ļ.
limite di quantificazione: 5		incertezza: ±	1
ianuri	μg/l	< 1	50
Metodo di analisi di riferimento: APAT CNR IRSA 4070 Man 29 2003			
limite di quantificazione: 1		incertezza:	
uoruri	mg/l	0,11	1,5
Metodo di analisi di riferimento: UNI EN ISO 10304-1:2009		- ,	
limite di quantificazione: 0,1		incertezza:	
		- 50	
itriti come NO2 Metodo di analisi di riferimento: UNI EN ISO 10304-1:2009	μg/l	< 50	500
weloud at attails at the line into the EN 150 10504-1.2009			
limite di quantificazione: 50		incertezza:	
olfati	mg/l	156	250
Metodo di analisi di riferimento: UNI EN ISO 10304-1:2009			
the death of the control of the cont			40
limite di quantificazione: 0,1		incertezza: ±	16
loruri	mg/l	971	
Metodo di analisi di riferimento: UNI EN ISO 10304-1:2009			
limite di quantificazione: 0,1		incertezza: ± 9	97,1
itrati come NO3	mg/l	16	
Metodo di analisi di riferimento: UNI EN ISO 10304-1:2009			
limite di montiferatione 0.4		·	<u> </u>
limite di quantificazione: 0,1		incertezza: ± 2	2
mmoniaca come NH4	mg/l	< 0,05	
Metodo di analisi di riferimento: UNICHIM 2363:2009			-
limite di quantificazione: 0,05		incertezza:	
lluminio	/!	- 1	200
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016	μg/l	<1	200
limite di quantificazione: 1		incertezza:	
ntimonio	μg/l	< 0,3	5
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016			l
limite di quantificazione: 0,3		incertezza:	
		ı	I
rgento	μg/l	< 1	10
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016			
limite di quantificazione: 1		incertezza:	

Ordine dei CHIMICI e dei FISICI della Prov. di Treviso n° A093 Codice Fiscale GSTDRN42R12H823B P.IVA 01627660267 Via Pirzio Biroli n.1 - 31046 ODERZO (TV)

Triggiano, 23 ottobre 2020

Certificato n° 20LA33442

CERTIFICATO ANALISI

Arsenico		μg/l	< 1	10
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016				
limite di qua	ntificazione: 1		incertezza:	
Bario		ug/l	44	
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016		μg/l	44	
limite di qua	ntificazione: 1		incertezza: ± 4	
Berillio		μg/l	< 0,3	4
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016				
limite di qua	ntificazione: 0,3		incertezza:	
	·			1
Boro		μg/l	357	1000
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016				
limite di qua	ntificazione: 1		incertezza: ± 36	
Cadmio		μg/l	< 0,3	5
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016		<u> </u>	10,0	
ilmite di qua	ntificazione: 0,3		incertezza:	
Calcio		mg/l	130	
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016			·	•
limite di qua	ntificazione: 0,001		incertezza: ± 13	
Cobalto		μg/l	<1	50
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016			× 1	30
limite di qua	ntificazione: 1		incertezza:	
romo totale		μg/l	< 1	50
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016			· ·	'
limite di qua	ntificazione: 1		incertezza:	
			T	T
Cromo esavalente Metodo di analisi di riferimento: APAT CNR IRSA n° 3150 Man 29 20	20	μg/l	< 0,5	5
metodo di analisi di riferimento: APAT CNR IRSA N. 3150 Man 29 200	<i></i>			
limite di qua	ntificazione: 0,5		incertezza:	
erro		μg/l	< 1	200
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016		15		
Emilio di avio	ntificazione: 1		incertezza:	
ilmite di qua	nuncazione. I		incertezza.	
lagnesio		mg/l	99	
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016			<u>.</u>	
limite di qua	ntificazione: 0,001		incertezza: ± 10	

Ordine dei CHIMICI e dei FISICI della Prov. di Treviso n° A093 Codice Fiscale GSTDRN42R12H823B P.IVA 01627660267 Via Pirzio Biroli n.1 - 31046 ODERZO (TV)

Triggiano, 23 ottobre 2020

Certificato n° 20LA33442

CERTIFICATO ANALISI

Manganese	μg/l	< 1	50
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016		ļ	I
limite di quantificazione: 1		incertezza:	
inino a quantito de la companya de l		oortozza.	
lercurio e e e e e e e e e e e e e e e e e e e	μg/l	< 0,1	1
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016			
limite di quantificazione: 0,1		incertezza:	
lolibdeno	μg/l	10,7	
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016	μ9/1	10,7	
limite di quantificazione: 1		incertezza: ± 1,1	
lichelio	μg/l	< 1	20
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016			<u> </u>
limite di quantificazione: 1		incertezza:	
што и цианиналоне. Т		moortozza.	
iombo	μg/l	< 1	10
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016		'	
limite di quantificazione: 1		incertezza:	
· · · · · · · · · · · · · · · · · · ·			
otassio	mg/l	23	
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016			
limite di quantificazione: 0,001		incertezza: ± 2	
dame	 μg/l	<1	1000
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016	F-9·		
limite di quantificazione: 1		incertezza:	
elenio	μg/l	< 0,3	10
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016		,	
limite di quantificazione: 0,3		incertezza:	
iii iile di quantincazione. 0,5		incertezza.	
odio	mg/l	617	
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016		'	•
limite di quantificazione: 0,001		incertezza: ± 62	
tagno	μg/l	< 1	
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016			
limite di quantificazione: 1		incertezza:	
allio	μg/l	< 0,2	2
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016			
		incertezza:	

Ordine dei CHIMICI e dei FISICI della Prov. di Treviso n° A093 Codice Fiscale GSTDRN42R12H823B P.IVA 01627660267 Via Pirzio Biroli n.1 - 31046 ODERZO (TV)

Triggiano, 23 ottobre 2020

Certificato n° 20LA33442

CERTIFICATO ANALISI

μg/l	< 1	
	incertezza:	
	0.4	
μg/I	3,1	
	incertezza: ± 0,3	
μg/l	< 1	3000
		<u> </u>
	incertezza:	
	incertezza.	
μg/l	< 0,1	1
	incertezza:	
μg/l	< 0,1	50
	incertezza:	
	< 0.1	25
	10,1	
	incertezza:	
μg/l	< 0,1	15
	•	•
	incertezza:	
		ı
μg/l	< 0,1	10
	incertezza:	
	< 0.01	0,1
μg/1	< 0,01	0,1
	incertezza:	
μg/l	< 0,001	0,01
		l
	incertezza:	
	1100110224.	
μg/l	< 0,01	0,1
	µg/l µg/l µg/l µg/l µg/l µg/l µg/l µg/l	incertezza: µg/l 3,1 incertezza: ± 0,3 µg/l < 1 incertezza: µg/l < 0,1 incertezza: µg/l < 0,01 incertezza: µg/l < 0,01 incertezza:

Ordine dei CHIMICI e dei FISICI della Prov. di Treviso nº A093 Codice Fiscale GSTDRN42R12H823B P.IVA 01627660267 Via Pirzio Biroli n.1 - 31046 ODERZO (TV)

Triggiano, 23 ottobre 2020

Certificato n° 20LA33442

CERTIFICATO ANALISI

Benzo(k)fluorantene		μg/l	< 0,005	0,05
Metodo di analisi di riferimento: EPA 8270E				I
limite di qu	antificazione: 0,005		incertezza:	
enzo(g,h,i)perilene		μg/l	< 0,001	0,01
Metodo di analisi di riferimento: EPA 8270E		ру/і	< 0,001	0,01
limite di qu	antificazione: 0,001		incertezza:	
risene		μg/l	< 0,01	5
Metodo di analisi di riferimento: EPA 8270E		рул	< 0,01	3
limite di au	uantificazione: 0,01		incertezza:	
milic di qu	antinoazione. 0,01		moortozza.	
Dibenzo(a,h)antracene		μg/l	< 0,001	0,01
Metodo di analisi di riferimento: EPA 8270E				
limite di qu	antificazione: 0,001		incertezza:	
ndeno(1,2,3-c,d)pirene		μg/l	< 0,01	0,1
Metodo di analisi di riferimento: EPA 8270E			5,5.1	
limite di qu	antificazione: 0,01		incertezza:	
Pirene		μg/l	< 0,01	50
Metodo di analisi di riferimento: EPA 8270E			'	!
limite di qu	nantificazione: 0,01		incertezza:	
ommatoria IPA (punto 38, tabella 2, allegato 5, ti	itolo V d. Lgs 152/2006)	μg/l	< 0,01	0,1
Metodo di analisi di riferimento: EPA 8270E				
limite di qu	antificazione: 0,01		incertezza:	
Clorometano			104	4.5
Metodo di analisi di riferimento: UNI EN ISO 15680:2005		μg/l	< 0,1	1,5
	15			
iimite ai qu	antificazione: 0,1		incertezza:	
cloroformio (triclorometano)		μg/l	< 0,01	0,15
Metodo di analisi di riferimento: UNI EN ISO 15680:2005				
limite di qu	antificazione: 0,01		incertezza:	
Cloruro di vinile		μg/l	< 0,05	0,5
Metodo di analisi di riferimento: UNI EN ISO 15680:2005			• • •	
limite di qu	nantificazione: 0,05		incertezza:	
,2 - Dicloroetano		uall	< 0,1	3
Metodo di analisi di riferimento: UNI EN ISO 15680:2005		μg/l	< 0,1	
	contifications, 0.1		incorto	
limite ai qu	antificazione: 0,1		incertezza:	

Ordine dei CHIMICI e dei FISICI della Prov. di Treviso n° A093 Codice Fiscale GSTDRN42R12H823B P.IVA 01627660267 Via Pirzio Biroli n.1 - 31046 ODERZO (TV)

Triggiano, 23 ottobre 2020

Certificato n° 20LA33442

CERTIFICATO ANALISI

1,1 - Dicloroetilene	μg/l	0,381	0,05
Metodo di analisi di riferimento: UNI EN ISO 15680:2005		<u>, </u>	
limite di quantificazione: 0,0	05	incertezza: ± 0,057	
ricloroetilene	μg/l	< 0,1	1,5
Metodo di analisi di riferimento: UNI EN ISO 15680:2005		7 0,1	.,,0
limite di quantificazione: 0,1		incertezza:	
		-0.4	
etracloroetilene Metodo di analisi di riferimento: UNI EN ISO 15680:2005	μg/l	< 0,1	1,1
limite di quantificazione: 0,1		incertezza:	
·			I
saclorobutadiene (HCBD) Metodo di analisi di riferimento: UNI EN ISO 15680:2005	μg/l	< 0,01	0,15
limite di quantificazione: 0,0	1	incertezza:	
ommatoria organoalogenati (punto 47, tabella 2, allegato 552/2006)	5, titolo V d. Lgs	< 1	10
Metodo di analisi di riferimento: UNI EN ISO 15680:2005			
limite di quantificazione: 1		incertezza:	
		incertezza.	
,1 - Dicloroetano	μg/l	< 0,1	810
Metodo di analisi di riferimento: UNI EN ISO 15680:2005			
limite di quantificazione: 0,1		incertezza:	
,2 - Dicloroetilene	μg/l	< 0,1	60
Metodo di analisi di riferimento: UNI EN ISO 15680:2005			
limite di quantificazione: 0,1		incertezza:	
O. Dielegener		0.000	1 0.45
,2 - Dicloropropano Metodo di analisi di riferimento: UNI EN ISO 15680:2005	μg/l	0,020	0,15
		i : 0.000	
limite di quantificazione: 0,0	<u> </u>	incertezza: ± 0,003	
,1,2 - Tricloroetano	μg/l	< 0,01	0,2
Metodo di analisi di riferimento: UNI EN ISO 15680:2005			
limite di quantificazione: 0,0	1	incertezza:	
2,3 - Tricloropropano	μg/l	< 0,001	0,001
Metodo di analisi di riferimento: UNI EN ISO 15680:2005		'	·
limite di quantificazione: 0,0	01	incertezza:	
1,2,2 - Tetracloroetano		< 0.005	0,05
Metodo di analisi di riferimento: UNI EN ISO 15680:2005	µg/l	< 0,005	0,05
	05	:t	
limite di quantificazione: 0,0	UO	incertezza:	

Ordine dei CHIMICI e dei FISICI della Prov. di Treviso n° A093 Codice Fiscale GSTDRN42R12H823B P.IVA 01627660267 Via Pirzio Biroli n.1 - 31046 ODERZO (TV)

Triggiano, 23 ottobre 2020

Certificato n° 20LA33442

CERTIFICATO ANALISI

Tuibusussataus			< 0.04	
Fribromometano Metodo di analisi di riferimento: UNI EN ISO 15680:2005		μg/l	< 0,01	0,3
limit	e di quantificazione: 0,01		incertezza:	
,2 - Dibromoetano		μg/l	< 0,001	0,001
Metodo di analisi di riferimento: UNI EN ISO 15680:2005			5,551	
р. ч	I'			
limite	e di quantificazione: 0,001		incertezza:	
Dibromoclorometano		μg/l	< 0,01	0,13
Metodo di analisi di riferimento: UNI EN ISO 15680:2005				<u>'</u>
limit	e di quantificazione: 0,01		incertezza:	
way and interpretation of			< 0.04	0.47
romodiclorometano Metodo di analisi di riferimento: UNI EN ISO 15680:2005		μg/l	< 0,01	0,17
ivietodo di arialisi di filerimento. Oni En 130 13000.2000				
limite	e di quantificazione: 0,01		incertezza:	
litrobenzene		μg/l	< 0,3	3,5
Metodo di analisi di riferimento: EPA 8260 rev 3 2006		1-3/-	3 0,0	
limite	e di quantificazione: 0,3		incertezza:	
,2 - Dinitrobenzene		μg/l	< 0,3	15
Metodo di analisi di riferimento: EPA 8260 rev 3 2006				<u> </u>
limit	e di quantificazione: 0,3		incertezza:	
				I
,3- dinitrobenzene		μg/l	< 0,3	3,7
Metodo di analisi di riferimento: EPA 8260 rev 3 2006				
limite	e di quantificazione: 0,3		incertezza:	
loronitrobenzeni (ognumo)		μg/l	< 0,05	0,5
Metodo di analisi di riferimento: EPA 8260 rev 3 2006		Pg/i	~ 0,03	
limit	e di quantificazione: 0,05		incertezza:	
lonoclorobenzene		μg/l	< 0,1	40
Metodo di analisi di riferimento: UNI EN ISO 15680:2005			•	
limite	e di quantificazione: 0,1		incertezza:	
2 dialarahanana				
,2 - diclorobenzene Metodo di analisi di riferimento: UNI EN ISO 15680:2005		μg/l	< 0,1	270
Microso di Girano, di filigili iletto. Orgi EN 150 15000.2005				
limite	e di quantificazione: 0,1		incertezza:	
,4 - diclorobenzene		μg/l	< 0,05	0,5
Metodo di analisi di riferimento: UNI EN ISO 15680:2005		רשיי	- 0,00	
limite	e di quantificazione: 0,05		incertezza:	

Ordine dei CHIMICI e dei FISICI della Prov. di Treviso n° A093 Codice Fiscale GSTDRN42R12H823B P.IVA 01627660267 Via Pirzio Biroli n.1 - 31046 ODERZO (TV)

Triggiano, 23 ottobre 2020

Certificato n° 20LA33442

CERTIFICATO ANALISI

,2,4 - Triclorobenzene		μg/l	< 0,1	190
Metodo di analisi di riferimento: UNI EN ISO 1568	0:2005			
	limite di quantificazione: 0,1		incertezza:	
2.4.5. Totaloushamana			104	10
2,4,5 - Tetraclorobenzene Metodo di analisi di riferimento: EPA 8270E		µg/l	< 0,1	1,8
Motodo di dilanoi di monmonto. El 71 02102				
	limite di quantificazione: 0,1		incertezza:	
entaclorobenzene		μg/l	< 0,5	5
Metodo di analisi di riferimento: EPA 8270E				
	limite di quantificazione: 0,5		incertezza:	
saclorobenzene (HCB)		μg/l	< 0,001	0,01
Metodo di analisi di riferimento: EPA 8270E			l	
	limite di quantificazione: 0,001		incertezza:	
- clorofenolo		μg/l	<1	180
Metodo di analisi di riferimento: EPA 8270E		F9:		
	limite di quantificazione: 1		incertezza:	
,4 - Diclorofenolo		μg/l	< 1	110
Metodo di analisi di riferimento: EPA 8270E			-	'
	limite di quantificazione: 1		incertezza:	
,4,6 - Triclorofenolo		μg/l	< 0,5	5
Metodo di analisi di riferimento: EPA 8270E			-	
	limite di quantificazione: 0,5		incertezza:	
entaclorofenolo		μg/l	< 0,05	0,5
Metodo di analisi di riferimento: EPA 8270E		1-5.	1 0,00	
	limite di quantificazione: 0,05		incertezza:	
lacior		μg/l	< 0,01	0,1
Metodo di analisi di riferimento: EPA 8270E		ру/і	< 0,01	0,1
	limite di quantificazione: 0,01		incertezza:	
ldrin		P	4 0 000	0.00
Metodo di analisi di riferimento: EPA 8270E		μg/l	< 0,003	0,03
	limite di moneste con conce			
	limite di quantificazione: 0,003		incertezza:	
trazina		μg/l	< 0,01	0,3
Metodo di analisi di riferimento: EPA 8270E				
	limite di quantificazione: 0,01		incertezza:	

Ordine dei CHIMICI e dei FISICI della Prov. di Treviso n° A093 Codice Fiscale GSTDRN42R12H823B P.IVA 01627660267 Via Pirzio Biroli n.1 - 31046 ODERZO (TV)

Triggiano, 23 ottobre 2020

Certificato n° 20LA33442

CERTIFICATO ANALISI

Alfa-esacloroesano		μg/l	< 0,01	0,1
Metodo di analisi di riferimento: EPA 8270E			•	
limite o	di quantificazione: 0,01		incertezza:	
Beta-esacloroesano Metodo di analisi di riferimento: EPA 8270E		μg/l	< 0,01	0,1
Metodo di analisi di filetimento. EPA 6270E				
limite o	di quantificazione: 0,01		incertezza:	
Gamma-esacloroesano (lindano)		μg/l	< 0,01	0,1
Metodo di analisi di riferimento: EPA 8270E		15	7 0,0 1	
limite «	di quantificazione: 0,01		incertezza:	
Clordano Metodo di analisi di riferimento: EPA 8270E		µg/l	< 0,01	0,1
MELOGO DI ANANSI DI MEMMEMBO. EPA 8270E				
limite o	di quantificazione: 0,01		incertezza:	
DDD, DDT, DDE		μg/l	< 0,01	0,1
Metodo di analisi di riferimento: EPA 8270E			٠,٠.	
lionite.	ti quantificazione: 0.01		incertezza:	
limite (di quantificazione: 0,01		micertezza.	
Dieldrin		μg/l	< 0,003	0,03
Metodo di analisi di riferimento: EPA 8270E				·
limite (di quantificazione: 0,003		incertezza:	
Endrin		μg/l	< 0,01	0,1
Metodo di analisi di riferimento: EPA 8270E		<u>р</u> ул	\ 0,01	0,1
limite o	di quantificazione: 0,01		incertezza:	
Sommatoria fitofarmaci (punto 86, tabella 2	2, allegato 5, titolo V d. Lgs	μg/l	< 0,05	0,5
152/2006) Metodo di analisi di riferimento: EPA 8270E			, 0,00	
limite	di quantificazione: 0,05		incertezza:	
Clorpirifos		μg/l	< 0,1	
Metodo di analisi di riferimento: EPA 8270E			,	I
limite o	di quantificazione: 0,1		incertezza:	
Dimotosta			ا م م د	I
Dimetoato Metodo di analisi di riferimento: EPA 8270E		μg/l	< 0,1	
The second secon				
limite o	di quantificazione: 0,1		incertezza:	
Deltametrina		μg/l	< 0,1	
Metodo di analisi di riferimento: EPA 8270E			-,-	
1:1a	di quantificazione: 0.1		incortezza	
limite	di quantificazione: 0,1		incertezza:	

Ordine dei CHIMICI e dei FISICI della Prov. di Treviso n° A093 Codice Fiscale GSTDRN42R12H823B P.IVA 01627660267 Via Pirzio Biroli n.1 - 31046 ODERZO (TV)

Triggiano, 23 ottobre 2020

Certificato n° 20LA33442

CERTIFICATO ANALISI

(valido a tutti gli effetti come da D. L. n° 842/28)

Fention		μg/l	< 0,1	
Metodo di analisi di riferimento: EPA 8270E				
	limite di quantificazione: 0,1		incertezza:	
				T
Oxifluorfen		μg/l	< 0,1	
Metodo di analisi di riferimento: EPA 8270E				
	limite di quantificazione: 0,1		incertezza:	
Paration		μg/l	< 0,1	
Metodo di analisi di riferimento: EPA 8270E			'	1
	limite di quantificazione: 0,1		incertezza:	
Simazina		μg/l	< 0,1	
Metodo di analisi di riferimento: EPA 8270E				
	limite di quantificazione: 0,1		incertezza:	
Sommatoria pesticidi fosforati		μg/l	< 0,1	
Metodo di analisi di riferimento: EPA 8270E				1
	limite di quantificazione: 0,1		incertezza:	
PCB		μg/l	< 0,001	0,01
Metodo di analisi di riferimento: APAT CNR IRS	A 5110 Man 29 2003		•	
	limite di quantificazione: 0,001		incertezza:	

Note:

La determinazione dei metalli è stata effettuata sul campione filtrato e acidificato. Nel calcolo della concentrazione degli elementi in traccia non viene considerato il recupero determinato dal laboratorio il quale risulta essere compreso tra 90 e 110 %.

L'incertezza di misura riportata nel presente certificato di analisi è espressa come incertezza estesa con un fattore di copertura (k) pari a 2 corrispondente a un livello di fiducia di circa 95%.

I risultati delle analisi si riferiscono ESCLUSIVAMENTE al campione esaminato; si declina ogni responsabilità nei casi di utilizzo del presente atto in difformità agli usi consentiti dalla Legge. Le analisi da eseguire sono state commissionate dal committente e dunque si declina ogni responsabilità in merito alla completezza delle informazioni.

Le analisi sono state eseguite dalla CHIMIE Srl e i LABORATORI ANALISI CHIMICHE DOTT. ADRIANO GIUSTO - SERVIZI AMBIENTE S.R.L., accreditato al n. 0128L, del gruppo LIFEANALYTICS.

Il chimico

Laboratorio Analisi Chimiche Dott. A. Giusto Servizi Ambiente S.r.I. - Chimie S.r.I. Gruppo LIFEANALYTICS

Tel. 0804621899 – info.chimie@lifeanalytics.it Laboratori Conformi alla norma UNI CEI EN ISO/IEC 17025:2018 Laboratori Certificati UNI EN ISO 9001:2015 e UNI EN ISO 14001:2015

Ordine dei CHIMICI e dei FISICI della Prov. di Treviso n° A093 Codice Fiscale GSTDRN42R12H823B P.IVA 01627660267 Via Pirzio Biroli n.1 - 31046 ODERZO (TV)

Triggiano, 23 ottobre 2020

Certificato n° 20LA33443

CERTIFICATO ANALISI

(valido a tutti gli effetti come da D. L. n° 842/28)

COMMITTENTE: FORMICA AMBIENTE srl - Via Groenlandia 47 - Roma

ETICHETTA: Campione di acqua di falda prelevato dal pozzo n° **PE2** della discarica per rifiuti non pericolosi sita in c.da Formica (BR)

Data ricezione campione: 23/09/20 Profondità della falda: 44,2 m

Il campione è stato prelevato dal tecnico dello studio CHIMIE Srl, P. Chim. G. Cipriano come da verbale nº 65/09

RISULTATI

PARAMETRO	unità di misura	valore determinato	D. Lgs. 152/06 Tab. 2 allegato 5 alla parte IV Titolo V
рН		7,02	
Metodo di analisi di riferimento: UNI EN ISO 10523:2012		'	<u>'</u>
limite di quantificazione: > 1 e < 13		incertezza: ±	0,12
Temperatura	°C	19,7	
Metodo di analisi di riferimento: APAT CNR IRSA 2100 Man 29 2003			•
limite di quantificazione: 1		incertezza: ±	0,2
Ossigeno disciolto	mg/l	4,64	
Metodo di analisi di riferimento: Strumentale - Sensore di Ossigeno Disciolto a luminescenza LDO			•
limite di quantificazione: 0,5		incertezza: ±	0,46
Potenziale Redox	mV	203,3	
Metodo di analisi di riferimento: Strumentale - Sensore ORP			·
limite di quantificazione: 10		incertezza: ±	20,3
Conducibilità	uS/cm a 20 °C	3590	
Metodo di analisi di riferimento: UNI EN 27888:1995			·
limite di quantificazione: 10		incertezza: ±	71,8
Ossidabilità O2	mg/l	< 0,5	
Metodo di analisi di riferimento: metodo Tritrimetrico (secondo Kubel), ISTISAN 07/31		•	
limite di quantificazione: 0,5		incertezza:	
Domanda biochimica di ossigeno (BOD5) a 20°C senza nitrificazione	mgO ₂ /I	< 0,5	
Metodo di analisi di riferimento: APAT CNR IRSA 5120 Man 29 2003			1
limite di quantificazione: 0,5		incertezza:	
Carbonio organico totale (TOC)	mg/l	0,20	
Metodo di analisi di riferimento: APAT CNR IRSA 5040 Man 29 2003			•
limite di quantificazione: 0,1		incertezza: ±	0,04

Ordine dei CHIMICI e dei FISICI della Prov. di Treviso n° A093 Codice Fiscale GSTDRN42R12H823B P.IVA 01627660267 Via Pirzio Biroli n.1 - 31046 ODERZO (TV)

Triggiano, 23 ottobre 2020

Certificato n° 20LA33443

CERTIFICATO ANALISI

Durezza totale	° F	72	
Metodo di analisi di riferimento: APAT CNR IRSA 2040 A Man 29 2003		!	'
limite di quantificazione: 5		incertezza: ± 1	
			1
ianuri	μg/l	< 1	50
Metodo di analisi di riferimento: APAT CNR IRSA 4070 Man 29 2003			
limite di quantificazione: 1		incertezza:	
luoruri	mg/l	< 0,1	1,5
Metodo di analisi di riferimento: UNI EN ISO 10304-1:2009		- /	<u> </u>
limite di quantificazione: 0,1		incertezza:	
litriti come NO2	μg/l	< 50	500
Metodo di analisi di riferimento: UNI EN ISO 10304-1:2009			
limite di quantificazione: 50		incertezza:	
colfati	mg/l	148	250
Metodo di analisi di riferimento: UNI EN ISO 10304-1:2009	9/1	140	
limite di quantificazione: 0,1		incertezza: ± 1	5
Cloruri	mg/l	978	
Metodo di analisi di riferimento: UNI EN ISO 10304-1:2009		<u>'</u>	'
limite di quantificazione: 0,1		incertezza: ± 9	7,8
litrati come NO3	mg/l	12	
Metodo di analisi di riferimento: UNI EN ISO 10304-1:2009	mg/i	12	
limite di quantificazione: 0,1		incertezza: ± 1	
mmoniaca come NH4	mg/l	< 0,05	
Metodo di analisi di riferimento: UNICHIM 2363:2009			
limite di quantificazione: 0,05		incertezza:	
			1
Alluminio	μg/l	< 1	200
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016			
limite di quantificazione: 1		incertezza:	
ntimonio	μg/l	< 0,3	5
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016	10"	- 5,5	
E-2		inno-t	
limite di quantificazione: 0,3		incertezza:	
rgento	μg/l	< 1	10
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016			,
limite di quantificazione: 1		incertezza:	

Ordine dei CHIMICI e dei FISICI della Prov. di Treviso n° A093 Codice Fiscale GSTDRN42R12H823B P.IVA 01627660267 Via Pirzio Biroli n.1 - 31046 ODERZO (TV)

Triggiano, 23 ottobre 2020

Certificato n° 20LA33443

CERTIFICATO ANALISI

Arsenico		μg/l	< 1	10
Metodo di analisi di riferimento: UNI EN ISO 1729	94-2:2016			·
	limite di quantificazione: 1		incertezza:	
Bario		/!	42	
Metodo di analisi di riferimento: UNI EN ISO 1729	94-2:2016	μg/l	43	
	limite di quantificazione: 1		incertezza: ± 4	
Berillio		μg/l	< 0,3	4
Metodo di analisi di riferimento: UNI EN ISO 1729	94-2:2016		l	
	limite di quantificazione: 0,3		incertezza:	
Boro		μg/l	282	1000
Metodo di analisi di riferimento: UNI EN ISO 1729	94-2:2016			
	limite di quantificazione: 1		incertezza: ± 28	
Cadmio		μg/l	< 0,3	5
Metodo di analisi di riferimento: UNI EN ISO 1729	94-2:2016	P9'	10,0	
	limite di quantificazione: 0,3		incertezza:	
Calcio		mg/l	126	
Metodo di analisi di riferimento: UNI EN ISO 1729	94-2:2016		-	<u>'</u>
	limite di quantificazione: 0,001		incertezza: ± 13	
Cobalto			- 4	50
Metodo di analisi di riferimento: UNI EN ISO 1729	94-2:2016	μg/l	< 1	50
motodo di dilanoi di moninone. Givi Elvito Girizo				
	limite di quantificazione: 1		incertezza:	
Cromo totale		μg/l	< 1	50
Metodo di analisi di riferimento: UNI EN ISO 1729	94-2:2016			
	limite di quantificazione: 1		incertezza:	
	innic di quantinoazione.		moortozza.	
Cromo esavalente		μg/l	< 0,5	5
Metodo di analisi di riferimento: APAT CNR IRSA	n° 3150 Man 29 2003			
	limite di quantificazione: 0,5		incertezza:	
Ferro		!	<1	200
Metodo di analisi di riferimento: UNI EN ISO 1729	94-2:2016	μg/l	8.1	200
	limite di quantificazione: 1		incertezza:	
Magnesio		mg/l	99	
Metodo di analisi di riferimento: UNI EN ISO 1729	94-2:2016		L	<u> </u>
	limite di quantificazione: 0,001		incertezza: ± 10	
	mino di quantinoazione. 0,001		110011022a. ± 10	

Ordine dei CHIMICI e dei FISICI della Prov. di Treviso n° A093 Codice Fiscale GSTDRN42R12H823B P.IVA 01627660267 Via Pirzio Biroli n.1 - 31046 ODERZO (TV)

Triggiano, 23 ottobre 2020

Certificato n° 20LA33443

CERTIFICATO ANALISI

Manganese	μg/l	< 1	50
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016		·	1
limite di quantificazione: 1		incertezza:	
lercurio e e e e e e e e e e e e e e e e e e e	μg/l	< 0,1	1
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016			
limite di quantificazione: 0,1		incertezza:	
Molibdeno	 μg/l	13,4	
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016	F9.	10,4	
limite di quantificazione: 1		incertezza: ±	1,3
lichelio	μg/l	< 1	20
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016			<u> </u>
limite di quantificazione: 1		incertezza:	
			T
Piombo	μg/l	< 1	10
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016			
limite di quantificazione: 1		incertezza:	
Potassio	mg/l	23	
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016	mg/i	23	
			•
limite di quantificazione: 0,0	U1	incertezza: ±	2
Rame	μg/l	<1	1000
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016			•
limite di quantificazione: 1		incertezza:	
		[
Selenio	μg/l	< 0,3	10
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016			
limite di quantificazione: 0,3		incertezza:	
odio	mg/l	622	
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016	9.	V22	
	04		00
limite di quantificazione: 0,0	U1	incertezza: ±	62
stagno	µg/I	< 1	
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016		·	
limite di quantificazione: 1		incertezza:	
			1
allio	μg/l	< 0,2	2
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016			
limite di quantificazione: 0,2		incertezza:	<u> </u>

Ordine dei CHIMICI e dei FISICI della Prov. di Treviso n° A093 Codice Fiscale GSTDRN42R12H823B P.IVA 01627660267 Via Pirzio Biroli n.1 - 31046 ODERZO (TV)

Triggiano, 23 ottobre 2020

Certificato n° 20LA33443

CERTIFICATO ANALISI

ellurio		μg/l	<1	
Metodo di analisi di riferimento: UNI EN ISO 1729	4-2:2016			
	limite di quantificazione: 1		incertezza:	
 'anadio			2.5	
Metodo di analisi di riferimento: UNI EN ISO 1729	4-2:2016	μg/l	2,5	
	limite di quantificazione: 1		incertezza: ± 0,3	
linco		μg/l	< 1	3000
Metodo di analisi di riferimento: UNI EN ISO 1729	4-2:2016			
	limite di quantificazione: 1		incertezza:	
				1
Benzene Metodo di analisi di riferimento: UNI EN ISO 15680	0.2005	μg/l	< 0,1	1
motodo di ananai di monniento. Olvi Liv 130 10000				
	limite di quantificazione: 0,1		incertezza:	
tilbenzene		μg/l	< 0,1	50
Metodo di analisi di riferimento: UNI EN ISO 15680	0:2005			
	limite di quantificazione: 0,1		incertezza:	
	minic di quantineazione. 0,1		moortozza.	
Stirene		μg/l	< 0,1	25
Metodo di analisi di riferimento: UNI EN ISO 15680	0:2005			
	limite di quantificazione: 0,1		incertezza:	
oluene		μg/l	< 0,1	15
Metodo di analisi di riferimento: UNI EN ISO 15680	0:2005	μg/1	V 0,1	10
	limite di quantificazione: 0,1		incertezza:	
-Xilene		μg/l	< 0,1	10
Metodo di analisi di riferimento: UNI EN ISO 15680	0:2005		-	
	limite di quantificazione: 0,1		incertezza:	
			1	
Benzo(a)antracene Metodo di analisi di riferimento: EPA 8270E		μg/l	< 0,01	0,1
Metodo di analisi di filetimento. EFA 6270E				
	limite di quantificazione: 0,01		incertezza:	
Benzo(a)pirene		μg/l	< 0,001	0,01
Metodo di analisi di riferimento: EPA 8270E			-,	1 "
	limite di quantificazione: 0,001		incertezza:	
	infine di quantincazione. 0,001		iiioertezza.	
Benzo(b)fluorantene		μg/l	< 0,01	0,1
Metodo di analisi di riferimento: EPA 8270E				
	limite di quantificazione: 0,01		incertezza:	

Ordine dei CHIMICI e dei FISICI della Prov. di Treviso n° A093 Codice Fiscale GSTDRN42R12H823B P.IVA 01627660267 Via Pirzio Biroli n.1 - 31046 ODERZO (TV)

Triggiano, 23 ottobre 2020

Certificato n° 20LA33443

CERTIFICATO ANALISI

Benzo(k)fluorantene		μg/l	< 0,005	0,05
Metodo di analisi di riferimento: EPA 8270E				
limit	te di quantificazione: 0,005		incertezza:	
Benzo(g,h,i)perilene		μg/l	< 0,001	0,01
Metodo di analisi di riferimento: EPA 8270E				
limit	te di quantificazione: 0,001		incertezza:	
Crisene		μg/l	< 0,01	5
Metodo di analisi di riferimento: EPA 8270E		F9,.	10,01	
limit	te di quantificazione: 0,01		incertezza:	
Dibenzo(a,h)antracene		μg/l	< 0,001	0,01
Metodo di analisi di riferimento: EPA 8270E				ļ
limit	te di quantificazione: 0,001		incertezza:	
Indeno(1,2,3-c,d)pirene		μg/l	< 0,01	0,1
Metodo di analisi di riferimento: EPA 8270E				
limit	te di quantificazione: 0,01		incertezza:	
Pirene		//	< 0.04	50
Metodo di analisi di riferimento: EPA 8270E		μg/l	< 0,01	50
limit	te di quantificazione: 0,01		incertezza:	
Sommatoria IPA (punto 38, tabella 2, allegato	5, titolo V d. Lgs 152/2006)	μg/l	< 0,01	0,1
Metodo di analisi di riferimento: EPA 8270E	,		,	<u> </u>
limit	te di quantificazione: 0,01		incertezza:	
""""	to a quantineazione. 0,01		incortezza.	
Clorometano		μg/l	< 0,1	1,5
Metodo di analisi di riferimento: UNI EN ISO 15680:2005				
limit	te di quantificazione: 0,1		incertezza:	
Cloroformio (triclorometano)		μg/l	< 0,01	0,15
Metodo di analisi di riferimento: UNI EN ISO 15680:2005				
limit	te di quantificazione: 0,01		incertezza:	
Olement distrib				
Cloruro di vinile Metodo di analisi di riferimento: UNI EN ISO 15680:2005		μg/l	< 0,05	0,5
microdo di analisi di meninetilo. UNI EN 130 13060.2005				
limit	te di quantificazione: 0,05		incertezza:	
1,2 - Dicloroetano		μg/l	< 0,1	3
Metodo di analisi di riferimento: UNI EN ISO 15680:2005		ra''	- 0,1	
limit	te di quantificazione: 0,1		incertezza:	

Ordine dei CHIMICI e dei FISICI della Prov. di Treviso n° A093 Codice Fiscale GSTDRN42R12H823B P.IVA 01627660267 Via Pirzio Biroli n.1 - 31046 ODERZO (TV)

Triggiano, 23 ottobre 2020

Certificato n° 20LA33443

CERTIFICATO ANALISI

,1 - Dicloroetilene	μg/l	0,044	0,05
Metodo di analisi di riferimento: UNI EN ISO 15680:2005			•
limite di quantificazione: 0,005		incertezza: ± 0,0	07
ricloroetilene	μg/l	< 0,1	1,5
Metodo di analisi di riferimento: UNI EN ISO 15680:2005			.,,,
limite di quantificazione: 0,1		incertezza:	
etracloroetilene	μg/l	< 0,1	1,1
Metodo di analisi di riferimento: UNI EN ISO 15680:2005		-,-	
limite di quantificazione: 0,1		incertezza:	
saclorobutadiene (HCBD)	μg/l	< 0,01	0,15
Metodo di analisi di riferimento: UNI EN ISO 15680:2005		,	l
limite di quantificazione: 0,01		incertezza:	
ommatoria organoalogenati (punto 47, tabella 2, allegato 5, titolo V d. Lgs	//	< 1	10
52/2006) Metodo di analisi di riferimento: UNI EN ISO 15680:2005	μg/l		10
Metodo di arialisi di meninerito. Givi EN 130 13060.2003			
limite di quantificazione: 1		incertezza:	
,1 - Dicloroetano	μg/l	< 0,1	810
Metodo di analisi di riferimento: UNI EN ISO 15680:2005			
limite di quantificazione: 0,1		incertezza:	
,2 - Dicloroetilene	μg/l	< 0,1	60
Metodo di analisi di riferimento: UNI EN ISO 15680:2005		·	I
limite di quantificazione: 0,1		incertezza:	
,2 - Dicloropropano	μg/l	< 0,01	0,15
Metodo di analisi di riferimento: UNI EN ISO 15680:2005	F9 ⁻	7 0,01	5,15
limite di quantificazione: 0,01		incertezza:	
1,2 - Tricloroetano	μg/l	< 0,01	0,2
Metodo di analisi di riferimento: UNI EN ISO 15680:2005			
limite di quantificazione: 0,01		incertezza:	
,2,3 - Tricloropropano	μg/l	< 0,001	0,001
Metodo di analisi di riferimento: UNI EN ISO 15680:2005		I	ı
limite di quantificazione: 0,001		incertezza:	
,1,2,2 - Tetracloroetano	μg/l	< 0,005	0,05
Metodo di analisi di riferimento: UNI EN ISO 15680:2005		-,	1 222
limite di quantificazione: 0,005		incertezza:	

Ordine dei CHIMICI e dei FISICI della Prov. di Treviso n° A093 Codice Fiscale GSTDRN42R12H823B P.IVA 01627660267 Via Pirzio Biroli n.1 - 31046 ODERZO (TV)

Triggiano, 23 ottobre 2020

Certificato n° 20LA33443

CERTIFICATO ANALISI

Tribromomotono		< 0.04	
Fribromometano Metodo di analisi di riferimento: UNI EN ISO 15680:2005	µg/I	< 0,01	0,3
limite di quantificazione: 0,01		incertezza:	
1,2 - Dibromoetano	μg/l	< 0,001	0,001
Metodo di analisi di riferimento: UNI EN ISO 15680:2005		5,555	
limite di quantificazione: 0,001		incertezza:	
ilmite di quantificazione. 0,001		incertezza.	
Dibromoclorometano	μg/l	< 0,01	0,13
Metodo di analisi di riferimento: UNI EN ISO 15680:2005			
limite di quantificazione: 0,01		incertezza:	
		ı	
Bromodiclorometano	μg/l	< 0,01	0,17
Metodo di analisi di riferimento: UNI EN ISO 15680:2005			
limite di quantificazione: 0,01		incertezza:	
Nitrobenzene		< 0.2	2.5
Metodo di analisi di riferimento: EPA 8260 rev 3 2006	µg/I	< 0,3	3,5
limite di quantificazione: 0,3		incertezza:	
,2 - Dinitrobenzene	μg/l	< 0,3	15
Metodo di analisi di riferimento: EPA 8260 rev 3 2006		· I	I
limite di quantificazione: 0,3		incertezza:	
,3- dinitrobenzene	μg/l	< 0,3	3,7
Metodo di analisi di riferimento: EPA 8260 rev 3 2006			
limite di quantificazione: 0,3		incertezza:	
Cloronitrobenzeni (ognumo)	 μg/l	< 0,05	0,5
Metodo di analisi di riferimento: EPA 8260 rev 3 2006	μ9/1	< 0,03	0,3
limite di quantificazione: 0,05		incertezza:	
Monoclorobenzene	μg/l	< 0,1	40
Metodo di analisi di riferimento: UNI EN ISO 15680:2005			
limite di quantificazione: 0,1		incertezza:	
2 dialarahanyana	="	< 0.4	070
,2 - diclorobenzene Metodo di analisi di riferimento: UNI EN ISO 15680:2005	µg/I	< 0,1	270
limite di quantificazione: 0,1		incertezza:	
,4 - diclorobenzene	μg/l	< 0,05	0,5
Metodo di analisi di riferimento: UNI EN ISO 15680:2005	10	-,-•	
limite di quantificazione: 0,05		incertezza:	

Ordine dei CHIMICI e dei FISICI della Prov. di Treviso n° A093 Codice Fiscale GSTDRN42R12H823B P.IVA 01627660267 Via Pirzio Biroli n.1 - 31046 ODERZO (TV)

Triggiano, 23 ottobre 2020

Certificato n° 20LA33443

CERTIFICATO ANALISI

1,2,4 - Triclorobenzene		μg/l	< 0,1	190
Metodo di analisi di riferimento: UNI EN ISO 1568	0:2005		•,•	
	limite di quantificazione: 0,1		incertezza:	
	iiiiiic di quantinoazione. 0,1		moertezza.	
,2,4,5 - Tetraclorobenzene		μg/l	< 0,1	1,8
Metodo di analisi di riferimento: EPA 8270E			•	•
	limite di quantificazione: 0,1		incertezza:	
Pentaclorobenzene		μg/l	< 0,5	5
Metodo di analisi di riferimento: EPA 8270E				
	limite di quantificazione: 0,5		incertezza:	
Saclorobenzene (HCB)		μg/l	< 0,001	0,01
Metodo di analisi di riferimento: EPA 8270E		μg/1	< 0,001	0,01
	limite di quantificazione: 0,001		incertezza:	
- clorofenolo		μg/l	< 1	180
Metodo di analisi di riferimento: EPA 8270E			I	I
	limite di quantificazione: 1		incertezza:	
	iirinte di quantincazione. T		III.Certezza.	
.,4 - Diclorofenolo		μg/l	< 1	110
Metodo di analisi di riferimento: EPA 8270E			·	·
	limite di quantificazione: 1		incertezza:	
,4,6 - Triclorofenolo		μg/l	< 0,5	5
Metodo di analisi di riferimento: EPA 8270E				ļ .
	limite di quantificazione: 0,5		incertezza:	
entaclorofenolo		μg/l	< 0,05	0,5
Metodo di analisi di riferimento: EPA 8270E				
	limite di quantificazione: 0,05		incertezza:	
In the second se				
Metodo di analisi di riferimento: EPA 8270E		μg/l	< 0,01	0,1
Weloud a analisi armerimento. El A 6270E				
	limite di quantificazione: 0,01		incertezza:	
ıldrin		μg/l	< 0,003	0,03
Metodo di analisi di riferimento: EPA 8270E		F3	-,	
	limite di munerificani			
	limite di quantificazione: 0,003		incertezza:	
Atrazina		μg/l	< 0,01	0,3
Metodo di analisi di riferimento: EPA 8270E			1	L
	limite di quantificazione: 0,01		incertezza:	
	mino di quantinoazione. 0,01		iiiooitozza.	

Ordine dei CHIMICI e dei FISICI della Prov. di Treviso nº A093 Codice Fiscale GSTDRN42R12H823B P.IVA 01627660267 Via Pirzio Biroli n.1 - 31046 ODERZO (TV)

Triggiano, 23 ottobre 2020

Certificato n° 20LA33443

CERTIFICATO ANALISI

			T
Alfa-esacioroesano	μg/l	< 0,01	0,1
Metodo di analisi di riferimento: EPA 8270E			
limite di quantificazione: 0,01		incertezza:	
Beta-esacloroesano		1004	0.4
Metodo di analisi di riferimento: EPA 8270E	μg/l	< 0,01	0,1
, , , , , , , , , , , , , , , , , , ,			
limite di quantificazione: 0,01		incertezza:	
Gamma-esacloroesano (lindano)	μg/l	< 0,01	0,1
Metodo di analisi di riferimento: EPA 8270E		,	
limite di quantificazione: 0,01		incertezza:	
Clordano	ug/l	< 0,01	0,1
Metodo di analisi di riferimento: EPA 8270E	μg/l	~ 0,0 I	0,1
limite di quantificazione: 0,01		incertezza:	
DDD, DDT, DDE	μg/l	< 0,01	0,1
Metodo di analisi di riferimento: EPA 8270E			
limite di quantificazione: 0,01		incertezza:	
Dieldrin	μg/l	< 0,003	0,03
Metodo di analisi di riferimento: EPA 8270E			
limite di quantificazione: 0,003		incertezza:	
Endrin	μg/l	< 0,01	0,1
Metodo di analisi di riferimento: EPA 8270E	P9,.	30,01	<u> </u>
limite di quantificazione: 0,01		incertezza:	
Sommatoria fitofarmaci (punto 86, tabella 2, allegato 5, titolo V d. Lgs	μg/l	< 0,05	0,5
152/2006) Metodo di analisi di riferimento: EPA 8270E		,	
limite di quantificazione: 0,05		incertezza:	
Clorpirifos	μg/l	< 0,1	
Metodo di analisi di riferimento: EPA 8270E			
limite di quantificazione: 0,1		incertezza:	
Dimetoato EPA 00325	μg/l	< 0,1	
Metodo di analisi di riferimento: EPA 8270E			
limite di quantificazione: 0,1		incertezza:	
Deltametrina	μg/l	< 0,1	
Metodo di analisi di riferimento: EPA 8270E	µу/і	> 0, 1	
limite di quantificazione: 0,1		incertezza:	

Ordine dei CHIMICI e dei FISICI della Prov. di Treviso n° A093 Codice Fiscale GSTDRN42R12H823B P.IVA 01627660267 Via Pirzio Biroli n.1 - 31046 ODERZO (TV)

Triggiano, 23 ottobre 2020

Certificato nº 20LA33443

CERTIFICATO ANALISI

(valido a tutti gli effetti come da D. L. n° 842/28)

Fention		μg/l	< 0,1	
Metodo di analisi di riferimento: EPA 8270E				
	limite di quantificazione: 0,1		incertezza:	
				T
Oxifluorfen		μg/l	< 0,1	
Metodo di analisi di riferimento: EPA 8270E				
	limite di quantificazione: 0,1		incertezza:	
Paration		μg/l	< 0,1	
Metodo di analisi di riferimento: EPA 8270E			'	1
	limite di quantificazione: 0,1		incertezza:	
Simazina		μg/l	< 0,1	
Metodo di analisi di riferimento: EPA 8270E				
	limite di quantificazione: 0,1		incertezza:	
Sommatoria pesticidi fosforati		μg/l	< 0,1	
Metodo di analisi di riferimento: EPA 8270E				1
	limite di quantificazione: 0,1		incertezza:	
PCB		μg/l	< 0,001	0,01
Metodo di analisi di riferimento: APAT CNR IRS	A 5110 Man 29 2003		•	
	limite di quantificazione: 0,001		incertezza:	

Note:

La determinazione dei metalli è stata effettuata sul campione filtrato e acidificato. Nel calcolo della concentrazione degli elementi in traccia non viene considerato il recupero determinato dal laboratorio il quale risulta essere compreso tra 90 e 110 %.

L'incertezza di misura riportata nel presente certificato di analisi è espressa come incertezza estesa con un fattore di copertura (k) pari a 2 corrispondente a un livello di fiducia di circa 95%.

I risultati delle analisi si riferiscono ESCLUSIVAMENTE al campione esaminato; si declina ogni responsabilità nei casi di utilizzo del presente atto in difformità agli usi consentiti dalla Legge. Le analisi da eseguire sono state commissionate dal committente e dunque si declina ogni responsabilità in merito alla completezza delle informazioni.

Le analisi sono state eseguite dalla CHIMIE Srl e i LABORATORI ANALISI CHIMICHE DOTT. ADRIANO GIUSTO - SERVIZI AMBIENTE S.R.L., accreditato al n. 0128L, del gruppo LIFEANALYTICS.

Il chimico

Laboratorio Analisi Chimiche Dott. A. Giusto Servizi Ambiente S.r.I. - Chimie S.r.I. Gruppo LIFEANALYTICS

Tel. 0804621899 – info.chimie@lifeanalytics.it Laboratori Conformi alla norma UNI CEI EN ISO/IEC 17025:2018 Laboratori Certificati UNI EN ISO 9001:2015 e UNI EN ISO 14001:2015

Ordine dei CHIMICI e dei FISICI della Prov. di Treviso n° A093 Codice Fiscale GSTDRN42R12H823B P.IVA 01627660267 Via Pirzio Biroli n.1 - 31046 ODERZO (TV)

Triggiano, 23 ottobre 2020

Certificato n° 20LA33444

CERTIFICATO ANALISI

(valido a tutti gli effetti come da D. L. n° 842/28)

COMMITTENTE: FORMICA AMBIENTE srl - Via Groenlandia 47 - Roma

ETICHETTA: Campione di acqua di falda prelevato dal pozzo n° **V2** della discarica per rifiuti non pericolosi sita in c.da Formica (BR)

Data ricezione campione: 23/09/20 Profondità della falda: 40,4 m

Il campione è stato prelevato dal tecnico dello studio CHIMIE Srl, P. Chim. G. Cipriano come da verbale nº 65/09

RISULTATI

PARAMETRO	unità di misura	valore determinato	D. Lgs. 152/06 Tab. 2 allegato 5 alla parte IV Titolo V
рН		7,09	
Metodo di analisi di riferimento: UNI EN ISO 10523:2012			
limite di quantificazione: > 1 e < 13		incertezza: ±	0,12
Temperatura	°C	19,3	
Metodo di analisi di riferimento: APAT CNR IRSA 2100 Man 29 2003			·
limite di quantificazione: 1		incertezza: ±	0,2
Ossigeno disciolto	mg/l	3,95	
Metodo di analisi di riferimento: Strumentale - Sensore di Ossigeno Disciolto a luminescenza LDO			
limite di quantificazione: 0,5		incertezza: ±	0,40
Potenziale Redox	mV	178,9	
Metodo di analisi di riferimento: Strumentale - Sensore ORP			•
limite di quantificazione: 10		incertezza: ±	17,9
Conducibilità	uS/cm a 20 °C	2800	
Metodo di analisi di riferimento: UNI EN 27888:1995			
limite di quantificazione: 10		incertezza: ±	56
Ossidabilità O2	mg/l	< 0,5	
Metodo di analisi di riferimento: metodo Tritrimetrico (secondo Kubel), ISTISAN 07/31			•
limite di quantificazione: 0,5		incertezza:	
Domanda biochimica di ossigeno (BOD5) a 20°C senza nitrificazione	mgO ₂ /I	< 0,5	
Metodo di analisi di riferimento: APAT CNR IRSA 5120 Man 29 2003			<u> </u>
limite di quantificazione: 0,5		incertezza:	
Carbonio organico totale (TOC)	mg/l	< 0,1	
Metodo di analisi di riferimento: APAT CNR IRSA 5040 Man 29 2003		-	'
limite di quantificazione: 0,1		incertezza:	

Ordine dei CHIMICI e dei FISICI della Prov. di Treviso n° A093 Codice Fiscale GSTDRN42R12H823B P.IVA 01627660267 Via Pirzio Biroli n.1 - 31046 ODERZO (TV)

Triggiano, 23 ottobre 2020

Certificato n° 20LA33444

CERTIFICATO ANALISI

Durezza totale		°F	55	
Metodo di analisi di riferimento: APAT CNR IRSA 2040 A Man 29 2003				<u> </u>
limite di quantificazio	one: 5		incertezza: ± 1	
			r	1
ianuri		μg/l	< 1	50
Metodo di analisi di riferimento: APAT CNR IRSA 4070 Man 29 2003				
limite di quantificazio	one: 1		incertezza:	
luoruri		mg/l	0,16	1,5
Metodo di analisi di riferimento: UNI EN ISO 10304-1:2009		Ilig/i	0,16	1,5
limite di quantificazio	one: 0,1		incertezza:	
litriti come NO2		μg/l	< 50	500
Metodo di analisi di riferimento: UNI EN ISO 10304-1:2009				!
			inaart	
limite di quantificazio	one: ou		incertezza:	
olfati		mg/l	89	250
Metodo di analisi di riferimento: UNI EN ISO 10304-1:2009				
limite di quantificazio			incertezza: ± 9	
iiinte ui quantiiicazic	ле. 0,1		incertezza. i 9	
Cloruri		mg/l	656	
Metodo di analisi di riferimento: UNI EN ISO 10304-1:2009			-	
limite di quantificazio	one: 0.1		incertezza: ± 65,6	
litrati come NO3		mg/l	27	
Metodo di analisi di riferimento: UNI EN ISO 10304-1:2009				
limite di quantificazio	one: 0,1		incertezza: ± 3	
			ı	1
mmoniaca come NH4		mg/l	< 0,05	
Metodo di analisi di riferimento: UNICHIM 2363:2009				
limite di quantificazio	one: 0,05		incertezza:	
Illuminio		/1	- 4	1 200
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016		μg/l	< 1	200
limite di quantificazio	one: 1		incertezza:	
ntimonio		μg/l	< 0,3	5
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016			-,-	
limite di quantificazio	one: 0,3		incertezza:	
rgento		μg/l	< 1	10
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016				ļ.
limite di quantificazio	one: 1		incertezza:	

Ordine dei CHIMICI e dei FISICI della Prov. di Treviso n° A093 Codice Fiscale GSTDRN42R12H823B P.IVA 01627660267 Via Pirzio Biroli n.1 - 31046 ODERZO (TV)

Triggiano, 23 ottobre 2020

Certificato n° 20LA33444

CERTIFICATO ANALISI

Arsenico	μg/l	< 1	10
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016			
limite di quantificazione: 1		incertezza:	
Davia	//	22	1
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016	μg/l	33	
limite di quantificazione: 1		incertezza: ± 3	
Berillio	μg/l	< 0,3	4
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016			l .
limite di quantificazione: 0,3		incertezza:	
initio di qualititodazione, opo			
Boro	μg/l	114	1000
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016			
limite di quantificazione: 1		incertezza: ± 11	
Cadmio		~ n a	
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016	μg/l	< 0,3	5
limite di quantificazione: 0,3		incertezza:	
Calcio	mg/l	123	
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016		I	I
limite di quantificazione: 0,001		incertezza: ± 12	
Cobalto	μg/l	< 1	50
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016			
limite di quantificazione: 1		incertezza:	
Cromo totale	//	<1	50
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016	μg/l	× 1	50
limite di quantificazione: 1		incertezza:	
Cromo esavalente	μg/l	< 0,5	5
Metodo di analisi di riferimento: APAT CNR IRSA n° 3150 Man 29 2003			I
limite di quantificazione: 0,5		incertezza:	
Ferro	μg/l	< 1	200
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016			
limite di quantificazione: 1		incertezza:	
Magnesio Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016	mg/l	60	
MICLOUD DE AMERICA DE L'ARTINITÀ DE LA CONTRACTOR DE L'ARTINITÀ DE L'ART			
limite di quantificazione: 0,001		incertezza: ± 6	

Ordine dei CHIMICI e dei FISICI della Prov. di Treviso n° A093 Codice Fiscale GSTDRN42R12H823B P.IVA 01627660267 Via Pirzio Biroli n.1 - 31046 ODERZO (TV)

Triggiano, 23 ottobre 2020

Certificato n° 20LA33444

CERTIFICATO ANALISI

Manganese	µg/l	2,0	50
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016		'	!
limite di quantificazione: 1		incertezza: ± 0,2	
		.0.4	
Mercurio Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016	μg/l	< 0,1	1
limite di quantificazione: 0,1		incertezza:	
Molibdeno	μg/l	5,5	
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016		<u>'</u>	
limite di quantificazione: 1		incertezza: ± 0,6	
Nichelio	μg/l	< 1	20
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016			
limite di quantificazione: 1		incertezza:	
ill little di qualitificazione. I		incertezza.	
Piombo	μg/I	< 1	10
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016			·
limite di quantificazione: 1		incertezza:	
Potassio	mg/l	14	
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016			
limite di quantificazione: 0,001		incertezza: ± 1	
Rame	μg/l	< 1	1000
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016			
limite di quantificazione: 1		incertezza:	
Selenio		< 0.2	10
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016	μg/l	< 0,3	10
limite di quantificazione: 0,3		incertezza:	
Sodio	mg/l	438	
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016			
limite di quantificazione: 0,001		incertezza: ± 44	
Stagno	 μg/l	< 1	
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016			
limite di quantificazione: 1		incertezza:	
		Т	1
Tallio	μg/l	< 0,2	2
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016			
limite di quantificazione: 0,2		incertezza:	

Ordine dei CHIMICI e dei FISICI della Prov. di Treviso n° A093 Codice Fiscale GSTDRN42R12H823B P.IVA 01627660267 Via Pirzio Biroli n.1 - 31046 ODERZO (TV)

Triggiano, 23 ottobre 2020

Certificato n° 20LA33444

CERTIFICATO ANALISI

ellurio		μg/l	<1	
Metodo di analisi di riferimento: UNI EN ISO 1729	4-2:2016			
	limite di quantificazione: 1		incertezza:	
/anadio		μg/l	1,1	
Metodo di analisi di riferimento: UNI EN ISO 1729	4-2:2016	μ9/1	1,1	
	limite di monetti mi d			
	limite di quantificazione: 1		incertezza:	
linco		μg/l	< 1	3000
Metodo di analisi di riferimento: UNI EN ISO 1729	4-2:2016			
	limite di quantificazione: 1		incertezza:	
Benzene		μg/l	< 0,1	1
Metodo di analisi di riferimento: UNI EN ISO 15680	0:2005		10,1	
	limite di quantificazione: 0,1		incertezza:	
	iiimte di quantincazione. 0,1		incertezza.	
tilbenzene		μg/l	< 0,1	50
Metodo di analisi di riferimento: UNI EN ISO 15680	D:2005			
	limite di quantificazione: 0,1		incertezza:	
Stirene		μg/l	< 0,1	25
Metodo di analisi di riferimento: UNI EN ISO 15680	0:2005		3,5	
	limite di quantificazione: 0,1		incertezza:	
oluene	2,0005	μg/l	< 0,1	15
Metodo di analisi di riferimento: UNI EN ISO 15680):2005			
	limite di quantificazione: 0,1		incertezza:	
-Xilene		μg/l	< 0,1	10
Metodo di analisi di riferimento: UNI EN ISO 15680	0:2005		,	I
	limite di quantificazione: 0,1		incertezza:	
				I
Benzo(a)antracene Metodo di analisi di riferimento: EPA 8270E		μg/l	< 0,01	0,1
Metodo di analisi di filerimento. EFA 6210E				
	limite di quantificazione: 0,01		incertezza:	
Benzo(a)pirene		μg/l	< 0,001	0,01
Metodo di analisi di riferimento: EPA 8270E			•	I
	limite di quantificazione: 0,001		incertezza:	
	• • • • • • • • • • • • • • • • • • • •			
Benzo(b)fluorantene Metodo di analisi di riferimento: EPA 8270E		μg/l	< 0,01	0,1
Metodo di ariansi di frieffiffetto. EFA 0210E				
	limite di quantificazione: 0,01		incertezza:	

Ordine dei CHIMICI e dei FISICI della Prov. di Treviso n° A093 Codice Fiscale GSTDRN42R12H823B P.IVA 01627660267 Via Pirzio Biroli n.1 - 31046 ODERZO (TV)

Triggiano, 23 ottobre 2020

Certificato n° 20LA33444

CERTIFICATO ANALISI

Benzo(k)fluorantene		μg/l	< 0,005	0,05
Metodo di analisi di riferimento: EPA 8270E				
limit	te di quantificazione: 0,005		incertezza:	
Benzo(g,h,i)perilene		μg/l	< 0,001	0,01
Metodo di analisi di riferimento: EPA 8270E				
limit	te di quantificazione: 0,001		incertezza:	
Crisene		μg/l	< 0,01	5
Metodo di analisi di riferimento: EPA 8270E		F9,.	10,01	
limit	te di quantificazione: 0,01		incertezza:	
Dibenzo(a,h)antracene		μg/l	< 0,001	0,01
Metodo di analisi di riferimento: EPA 8270E				ļ
limit	te di quantificazione: 0,001		incertezza:	
Indeno(1,2,3-c,d)pirene		μg/l	< 0,01	0,1
Metodo di analisi di riferimento: EPA 8270E				
limit	te di quantificazione: 0,01		incertezza:	
Pirene		//	< 0.04	50
Metodo di analisi di riferimento: EPA 8270E		μg/l	< 0,01	50
limit	te di quantificazione: 0,01		incertezza:	
Sommatoria IPA (punto 38, tabella 2, allegato	5, titolo V d. Lgs 152/2006)	μg/l	< 0,01	0,1
Metodo di analisi di riferimento: EPA 8270E	,		,	<u> </u>
limit	te di quantificazione: 0,01		incertezza:	
""""	to a quantineazione. 0,01		incortezza.	
Clorometano		μg/l	< 0,1	1,5
Metodo di analisi di riferimento: UNI EN ISO 15680:2005				
limit	te di quantificazione: 0,1		incertezza:	
Cloroformio (triclorometano)		μg/l	< 0,01	0,15
Metodo di analisi di riferimento: UNI EN ISO 15680:2005				
limit	te di quantificazione: 0,01		incertezza:	
Olement distrib				
Cloruro di vinile Metodo di analisi di riferimento: UNI EN ISO 15680:2005		μg/l	< 0,05	0,5
microdo di analisi di meninetilo. UNI EN 130 13060.2005				
limit	te di quantificazione: 0,05		incertezza:	
1,2 - Dicloroetano		μg/l	< 0,1	3
Metodo di analisi di riferimento: UNI EN ISO 15680:2005		ra''	- 0,1	
limit	te di quantificazione: 0,1		incertezza:	

Ordine dei CHIMICI e dei FISICI della Prov. di Treviso n° A093 Codice Fiscale GSTDRN42R12H823B P.IVA 01627660267 Via Pirzio Biroli n.1 - 31046 ODERZO (TV)

Triggiano, 23 ottobre 2020

Certificato n° 20LA33444

CERTIFICATO ANALISI

1,1 - Dicloroetilene	μg/l	< 0,005	0,05
Metodo di analisi di riferimento: UNI EN ISO 15680:2005			
limite di quantificazione: 0,005		incertezza:	
ricloroetilene	μg/l	< 0,1	1,5
Metodo di analisi di riferimento: UNI EN ISO 15680:2005		-,-	
limite di quantificazione: 0,1		incertezza:	
etracloroetilene	µg/l	< 0,1	1,1
Metodo di analisi di riferimento: UNI EN ISO 15680:2005			
limite di quantificazione: 0,1		incertezza:	
saclorobutadiene (HCBD)	μg/l	< 0,01	0,15
Metodo di analisi di riferimento: UNI EN ISO 15680:2005			
limite di quantificazione: 0,01		incertezza:	
ommatoria organoalogenati (punto 47, tabella 2, allegato 5, titolo V d. Lgs 52/2006)	μg/l	< 1	10
Metodo di analisi di riferimento: UNI EN ISO 15680:2005			
limite di quantificazione: 1		incertezza:	
,1 - Dicloroetano	μg/l	< 0,1	810
Metodo di analisi di riferimento: UNI EN ISO 15680:2005			
limite di quantificazione: 0,1		incertezza:	
2 - Dicloroetilene	μg/l	< 0,1	60
Metodo di analisi di riferimento: UNI EN ISO 15680:2005			
limite di quantificazione: 0,1		incertezza:	
2 - Dicloropropano	μg/l	< 0,01	0,15
Metodo di analisi di riferimento: UNI EN ISO 15680:2005		<u>'</u>	
limite di quantificazione: 0,01		incertezza:	
1,2 - Tricloroetano	μg/l	< 0,01	0,2
Metodo di analisi di riferimento: UNI EN ISO 15680:2005		'	-
limite di quantificazione: 0,01		incertezza:	
2,3 - Tricloropropano	μg/l	< 0,001	0,001
Metodo di analisi di riferimento: UNI EN ISO 15680:2005		<u>'</u>	<u>'</u>
limite di quantificazione: 0,001		incertezza:	
1,2,2 - Tetracloroetano	μg/l	< 0,005	0,05
Metodo di analisi di riferimento: UNI EN ISO 15680:2005			<u> </u>
limite di quantificazione: 0,005		incertezza:	

Ordine dei CHIMICI e dei FISICI della Prov. di Treviso n° A093 Codice Fiscale GSTDRN42R12H823B P.IVA 01627660267 Via Pirzio Biroli n.1 - 31046 ODERZO (TV)

Triggiano, 23 ottobre 2020

Certificato n° 20LA33444

CERTIFICATO ANALISI

Tribromometano	μg/l	< 0,01	0,3
Metodo di analisi di riferimento: UNI EN ISO 15680:2005		'	!
limite di quantificazione: 0,01		incertezza:	
		1	
2 - Dibromoetano Metodo di analisi di riferimento: UNI EN ISO 15680:2005	μg/l	< 0,001	0,001
Wictors of affairs di frictimento. Gra Eta 100 10000.2000			
limite di quantificazione: 0,001		incertezza:	
ibromoclorometano	μg/l	< 0,01	0,13
Metodo di analisi di riferimento: UNI EN ISO 15680:2005			
limite di quantificazione: 0,01		incertezza:	
romodiclorometano	μg/l	< 0,01	0,17
Metodo di analisi di riferimento: UNI EN ISO 15680:2005	13	3,01	
limite di quantificazione: 0,01		incertezza:	
iiiiiie di quantinoazione. 0,01		mocrtezza.	
itrobenzene	μg/l	< 0,3	3,5
Metodo di analisi di riferimento: EPA 8260 rev 3 2006			
limite di quantificazione: 0,3		incertezza:	
2 - Dinitrobenzene	μg/l	< 0,3	15
Metodo di analisi di riferimento: EPA 8260 rev 3 2006		<u> </u>	
limite di quantificazione: 0,3		incertezza:	
3- dinitrobenzene	μg/l	< 0,3	3,7
Metodo di analisi di riferimento: EPA 8260 rev 3 2006		I	
limite di quantificazione: 0,3		incertezza:	
Ioronitrobenzeni (ognumo) Metodo di analisi di riferimento: EPA 8260 rev 3 2006	μg/l	< 0,05	0,5
welded at attails at the little into . Lt A 0200 feV 3 2000			
limite di quantificazione: 0,05		incertezza:	
onoclorobenzene	μg/l	< 0,1	40
Metodo di analisi di riferimento: UNI EN ISO 15680:2005		•	<u>'</u>
limite di quantificazione: 0,1		incertezza:	
2 - diclorobenzene	/!	< 0.1	070
Z - dictoropenzene Metodo di analisi di riferimento: UNI EN ISO 15680:2005	μg/l	< 0,1	270
limite di quantificazione: 0,1		incertezza:	
4 - diclorobenzene	μg/l	< 0,05	0,5
Metodo di analisi di riferimento: UNI EN ISO 15680:2005		1	I
limite di quantificazione: 0,05		incertezza:	
iiffile di quantificazione: U,U5		incertezza:	

Ordine dei CHIMICI e dei FISICI della Prov. di Treviso n° A093 Codice Fiscale GSTDRN42R12H823B P.IVA 01627660267 Via Pirzio Biroli n.1 - 31046 ODERZO (TV)

Triggiano, 23 ottobre 2020

Certificato n° 20LA33444

CERTIFICATO ANALISI

,2,4 - Triclorobenzene		μg/l	< 0,1	190
Metodo di analisi di riferimento: UNI EN ISO 1568	0:2005	F3**	7 0,1	
	limite di quantificazione: 0,1		incertezza:	
	imite di quantincazione. 0, i		incertezza.	
,2,4,5 - Tetraclorobenzene		μg/l	< 0,1	1,8
Metodo di analisi di riferimento: EPA 8270E			•	•
	limite di quantificazione: 0,1		incertezza:	
entaclorobenzene		μg/l	< 0,5	5
Metodo di analisi di riferimento: EPA 8270E				
	limite di quantificazione: 0,5		incertezza:	
saclorobenzene (HCB)		μg/l	< 0,001	0,01
Metodo di analisi di riferimento: EPA 8270E				
	limite di quantificazione: 0,001		incertezza:	
- clorofenolo		μg/l	<1	180
Metodo di analisi di riferimento: EPA 8270E		L9.1		
	limite di quantificazione: 1		incertezza:	
,4 - Diclorofenolo		μg/l	< 1	110
Metodo di analisi di riferimento: EPA 8270E			,	·
	limite di quantificazione: 1		incertezza:	
,4,6 - Triclorofenolo		μg/l	< 0,5	5
Metodo di analisi di riferimento: EPA 8270E			•	·
	limite di quantificazione: 0,5		incertezza:	
entaclorofenolo		μg/l	< 0,05	0,5
Metodo di analisi di riferimento: EPA 8270E			.,	
	limite di quantificazione: 0,05		incertezza:	
lacior		ug/l	< 0,01	0,1
Metodo di analisi di riferimento: EPA 8270E		μg/l	< 0,01	0,1
	limite di quantificazione: 0,01		incertezza:	
ldrin		μg/l	< 0,003	0,03
Metodo di analisi di riferimento: EPA 8270E		10.	-,	
	limite di quantificazione: 0,003		incertezza:	
trazina		μg/l	< 0,01	0,3
Metodo di analisi di riferimento: EPA 8270E		· -	·	
	limite di quantificazione: 0,01		incertezza:	

Ordine dei CHIMICI e dei FISICI della Prov. di Treviso n° A093 Codice Fiscale GSTDRN42R12H823B P.IVA 01627660267 Via Pirzio Biroli n.1 - 31046 ODERZO (TV)

Triggiano, 23 ottobre 2020

Certificato n° 20LA33444

CERTIFICATO ANALISI

Alfa-esacloroesano		μg/l	< 0,01	0,1
Metodo di analisi di riferimento: EPA 8270E			•	
limite o	di quantificazione: 0,01		incertezza:	
Beta-esacloroesano Metodo di analisi di riferimento: EPA 8270E		μg/l	< 0,01	0,1
Metodo di analisi di filetimento. EPA 6270E				
limite o	di quantificazione: 0,01		incertezza:	
Gamma-esacloroesano (lindano)		μg/l	< 0,01	0,1
Metodo di analisi di riferimento: EPA 8270E		15	7 0,0 1	
limite «	di quantificazione: 0,01		incertezza:	
Clordano Metodo di analisi di riferimento: EPA 8270E		µg/l	< 0,01	0,1
MELOGO DI ANANSI DI MEMMEMBO. EPA 8270E				
limite o	di quantificazione: 0,01		incertezza:	
DDD, DDT, DDE		μg/l	< 0,01	0,1
Metodo di analisi di riferimento: EPA 8270E			٠,٠.	
lionite.	ti quantificazione: 0.01		incertezza:	
limite (di quantificazione: 0,01		micertezza.	
Dieldrin		μg/l	< 0,003	0,03
Metodo di analisi di riferimento: EPA 8270E				·
limite (di quantificazione: 0,003		incertezza:	
Endrin		μg/l	< 0,01	0,1
Metodo di analisi di riferimento: EPA 8270E		<u>р</u> ул	\ 0,01	0,1
limite o	di quantificazione: 0,01		incertezza:	
Sommatoria fitofarmaci (punto 86, tabella 2	2, allegato 5, titolo V d. Lgs	μg/l	< 0,05	0,5
152/2006) Metodo di analisi di riferimento: EPA 8270E			, 0,00	
limite	di quantificazione: 0,05		incertezza:	
Clorpirifos		μg/l	< 0,1	
Metodo di analisi di riferimento: EPA 8270E			,	I
limite o	di quantificazione: 0,1		incertezza:	
Dimotosta			ا م م د	I
Dimetoato Metodo di analisi di riferimento: EPA 8270E		μg/l	< 0,1	
The second secon				
limite o	di quantificazione: 0,1		incertezza:	
Deltametrina		μg/l	< 0,1	
Metodo di analisi di riferimento: EPA 8270E			-,-	
1:1a	di quantificazione: 0.1		incortezza	
limite	di quantificazione: 0,1		incertezza:	

Ordine dei CHIMICI e dei FISICI della Prov. di Treviso n° A093 Codice Fiscale GSTDRN42R12H823B P.IVA 01627660267 Via Pirzio Biroli n.1 - 31046 ODERZO (TV)

Triggiano, 23 ottobre 2020

Certificato n° 20LA33444

CERTIFICATO ANALISI

(valido a tutti gli effetti come da D. L. n° 842/28)

Fention		μg/l	< 0,1	
Metodo di analisi di riferimento: EPA 8270E			•	
	limite di quantificazione: 0,1		incertezza:	
Oxifluorfen		μg/l	< 0,1	
Metodo di analisi di riferimento: EPA 8270E			3,5	I
	limite di quantificazione: 0,1		incertezza:	
Paration		μg/l	< 0,1	
Metodo di analisi di riferimento: EPA 8270E				
	limite di quantificazione: 0,1		incertezza:	
Simazina		μg/l	< 0,1	
Metodo di analisi di riferimento: EPA 8270E			•	·
	limite di quantificazione: 0,1		incertezza:	
Sommatoria pesticidi fosforati		μg/l	< 0,1	
Metodo di analisi di riferimento: EPA 8270E			'	-
	limite di quantificazione: 0,1		incertezza:	
PCB		μg/l	< 0,001	0,01
Metodo di analisi di riferimento: APAT CNR IRSA	5110 Man 29 2003	<u> </u>		
	limite di quantificazione: 0,001		incertezza:	

Note:

La determinazione dei metalli è stata effettuata sul campione filtrato e acidificato. Nel calcolo della concentrazione degli elementi in traccia non viene considerato il recupero determinato dal laboratorio il quale risulta essere compreso tra 90 e 110 %.

L'incertezza di misura riportata nel presente certificato di analisi è espressa come incertezza estesa con un fattore di copertura (k) pari a 2 corrispondente a un livello di fiducia di circa 95%.

I risultati delle analisi si riferiscono ESCLUSIVAMENTE al campione esaminato; si declina ogni responsabilità nei casi di utilizzo del presente atto in difformità agli usi consentiti dalla Legge. Le analisi da eseguire sono state commissionate dal committente e dunque si declina ogni responsabilità in merito alla completezza delle informazioni.

Le analisi sono state eseguite dalla CHIMIE Srl e i LABORATORI ANALISI CHIMICHE DOTT. ADRIANO GIUSTO - SERVIZI AMBIENTE S.R.L., accreditato al n. 0128L, del gruppo LIFEANALYTICS.

Il chimico

Laboratorio Analisi Chimiche Dott. A. Giusto Servizi Ambiente S.r.I. - Chimie S.r.I. Gruppo LIFEANALYTICS

Tel. 0804621899 – info.chimie@lifeanalytics.it Laboratori Conformi alla norma UNI CEI EN ISO/IEC 17025:2018 Laboratori Certificati UNI EN ISO 9001:2015 e UNI EN ISO 14001:2015

Ordine dei CHIMICI e dei FISICI della Prov. di Treviso n° A093 Codice Fiscale GSTDRN42R12H823B P.IVA 01627660267 Via Pirzio Biroli n.1 - 31046 ODERZO (TV)

Triggiano, 23 ottobre 2020

Certificato n° 20LA33445

CERTIFICATO ANALISI

(valido a tutti gli effetti come da D. L. n° 842/28)

COMMITTENTE: CAVED Srl, C.da Formica - Brindisi

ETICHETTA: Campione di acqua di falda prelevato dal **pozzo A** della CAVED Srl sita in c.da Formica (BR)

Data ricezione campione: 23/09/20 Profondità della falda: 39,7 m

Il campione è stato prelevato dal tecnico dello studio CHIMIE Srl, P. Chim. G. Cipriano come da verbale nº 65/09

RISULTATI

PARAMETRO	unità di misura	valore determinato	D. Lgs. 152/06 Tab. 2 allegato 5 alla parte IV Titolo V
рН		6,91	
Metodo di analisi di riferimento: UNI EN ISO 10523:2012			
limite di quantificazione: > 1 e < 13		incertezza: ±	0,12
Temperatura	°C	19,7	
Metodo di analisi di riferimento: APAT CNR IRSA 2100 Man 29 2003		•	·
limite di quantificazione: 1		incertezza: ±	0,2
Ossigeno disciolto	mg/l	4,88	
Metodo di analisi di riferimento: Strumentale - Sensore di Ossigeno Disciolto a luminescenza LDO			·
limite di quantificazione: 0,5		incertezza: ±	0,49
Potenziale Redox	mV	182,0	
Metodo di analisi di riferimento: Strumentale - Sensore ORP			·
limite di quantificazione: 10		incertezza: ±	18,2
Conducibilità	uS/cm a 20 °C	2820	
Metodo di analisi di riferimento: UNI EN 27888:1995			·
limite di quantificazione: 10		incertezza: ±	56,4
Ossidabilità O2	mg/l	< 0,5	
Metodo di analisi di riferimento: metodo Tritrimetrico (secondo Kubel), ISTISAN 07/31			
limite di quantificazione: 0,5		incertezza:	
Domanda biochimica di ossigeno (BOD5) a 20°C senza nitrificazione	mgO ₂ /I	< 0,5	
Metodo di analisi di riferimento: APAT CNR IRSA 5120 Man 29 2003			1
limite di quantificazione: 0,5		incertezza:	
Carbonio organico totale (TOC)	mg/l	0,1	
Metodo di analisi di riferimento: APAT CNR IRSA 5040 Man 29 2003		<u> </u>	1
limite di quantificazione: 0,1		incertezza:	

Ordine dei CHIMICI e dei FISICI della Prov. di Treviso n° A093 Codice Fiscale GSTDRN42R12H823B P.IVA 01627660267 Via Pirzio Biroli n.1 - 31046 ODERZO (TV)

Triggiano, 23 ottobre 2020

Certificato n° 20LA33445

CERTIFICATO ANALISI

Durezza totale	°F	74	
Metodo di analisi di riferimento: APAT CNR IRSA 2040 A Man 29 2003		ļ.	·
limite di quantificazione: 5		incertezza: ± 1	
			,
ianuri	μg/l	< 1	50
Metodo di analisi di riferimento: APAT CNR IRSA 4070 Man 29 2003			
limite di quantificazione: 1		incertezza:	
luoruri	mg/l	0,18	1,5
Metodo di analisi di riferimento: UNI EN ISO 10304-1:2009	9	0,10	.,0
limite di quantificazione: 0,1		incertezza:	
litriti come NO2	μg/l	< 50	500
Metodo di analisi di riferimento: UNI EN ISO 10304-1:2009		ļ.	·
limite di quantificazione: 50		incertezza:	
olfati	mg/l	98	250
Metodo di analisi di riferimento: UNI EN ISO 10304-1:2009			
limite di quantificazione: 0,1		incertezza: ± 10	
loruri	mg/l	675	
Metodo di analisi di riferimento: UNI EN ISO 10304-1:2009	9	0.0	
limite di quantificazione: 0,1		incertezza: ± 67,5	
		1100110224. 2 07,0	
itrati come NO3	mg/l	28	
Metodo di analisi di riferimento: UNI EN ISO 10304-1:2009			
limite di quantificazione: 0,1		incertezza: ± 3	
mmoniaca come NH4	mall	< 0,05	
Metodo di analisi di riferimento: UNICHIM 2363:2009	mg/l	< 0,03	
limite di quantificazione: 0,05		incertezza:	
lluminio	μg/l	< 1	200
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016			<u> </u>
limite di quantificazione: 1		incertezza:	
			I
Intimonio	μg/l	< 0,3	5
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016			
limite di quantificazione: 0,3		incertezza:	
urgento	μg/l	<1	10
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016	<u>н</u> д/і	- 1	10
limite di quantificazione: 1		incertezza:	

Ordine dei CHIMICI e dei FISICI della Prov. di Treviso n° A093 Codice Fiscale GSTDRN42R12H823B P.IVA 01627660267 Via Pirzio Biroli n.1 - 31046 ODERZO (TV)

Triggiano, 23 ottobre 2020

Certificato n° 20LA33445

CERTIFICATO ANALISI

Arsenico		μg/l	< 1	10
Metodo di analisi di riferimento: UNI EN ISO 172	294-2:2016			
	limite di quantificazione: 1		incertezza:	
Bario			44	
Metodo di analisi di riferimento: UNI EN ISO 172	294-2:2016	μg/l	41	
	limite di quantificazione: 1		incertezza: ± 4,1	
Berillio		μg/l	< 0,3	4
Metodo di analisi di riferimento: UNI EN ISO 172	294-2:2016		l	
	limite di quantificazione: 0,3		incertezza:	
			I	
Boro		μg/l	150	1000
Metodo di analisi di riferimento: UNI EN ISO 172	294-2:2016			
	limite di quantificazione: 1		incertezza: ± 15	
Cadmio		μg/l	< 0,3	5
Metodo di analisi di riferimento: UNI EN ISO 172	294-2:2016	P9/1	10,0	
	limite di quantificazione: 0,3		incertezza:	
Calcio		mg/l	131	
Metodo di analisi di riferimento: UNI EN ISO 172	294-2:2016		-	<u>'</u>
	limite di quantificazione: 0,001		incertezza: ± 13	
2.1.11.				
Cobalto Metodo di analisi di riferimento: UNI EN ISO 172	204-2:2016	μg/l	<1	50
Metodo di dilansi di filetimento.	2.2010			
	limite di quantificazione: 1		incertezza:	
Cromo totale		μg/l	< 1	50
Metodo di analisi di riferimento: UNI EN ISO 172	294-2:2016		-	
	limite di quantificazione: 1		incertezza:	
	iime di quantineazione.		mocrtezza.	
Cromo esavalente		μg/l	< 0,5	5
Metodo di analisi di riferimento: APAT CNR IRSA	A n° 3150 Man 29 2003			
	limite di quantificazione: 0,5		incertezza:	
2000				000
Metodo di analisi di riferimento: UNI EN ISO 172	294-2:2016	μg/l	< 1	200
	limite di quantificazione: 1		incertezza:	
Magnesio		mg/l	63	
Metodo di analisi di riferimento: UNI EN ISO 172	294-2:2016	-		
	limite di quantificazione: 0,001		incertezza: ± 6	
	iiinite di quantinoazione. 0,001		IIIOGIIGZZA. I U	

Ordine dei CHIMICI e dei FISICI della Prov. di Treviso nº A093 Codice Fiscale GSTDRN42R12H823B P.IVA 01627660267 Via Pirzio Biroli n.1 - 31046 ODERZO (TV)

Triggiano, 23 ottobre 2020

Certificato n° 20LA33445

CERTIFICATO ANALISI

Manganese	μg/l	< 1	50
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016			
limite di quantificazione: 1		incertezza:	
Mercurio (1997)	μg/l	< 0,1	1
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016	μ9/1	\ 0,1	'
limite di quantificazione: 0.4		incorto-zzo	
limite di quantificazione: 0,1		incertezza:	
lolibdeno (1997)	μg/l	6,2	
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016			
limite di quantificazione: 1		incertezza: ± (0,6
lichelio	μg/l	<1	20
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016	μ9/1	<u> </u>	20
limite di quantificazione: 1		incertezza:	
Piombo	μg/l	< 1	10
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016			<u> </u>
limite di quantificazione: 1		incertezza:	
N-4!-		40	
Potassio Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016	mg/l	16	
limite di quantificazione: 0,001		incertezza: ± 2	2
Rame	μg/l	< 1	1000
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016			·
limite di quantificazione: 1		incertezza:	
Nation 1.		400	40
Selenio Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016	µg/I	< 0,3	10
limite di quantificazione: 0,3		incertezza:	
Sodio	mg/l	451	
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016			<u> </u>
limite di quantificazione: 0,001		incertezza: ±	45
V.		.1	I
Stagno Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016	μg/l	< 1	
Motodo di difalia di Highinierko. Otal Eta 150 17234-2.2010			
limite di quantificazione: 1		incertezza:	
	μg/l	< 0,2	2
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016	F-97'	,-	
limite di avantificazione: 0.0		inocrto	
limite di quantificazione: 0,2		incertezza:	

Ordine dei CHIMICI e dei FISICI della Prov. di Treviso n° A093 Codice Fiscale GSTDRN42R12H823B P.IVA 01627660267 Via Pirzio Biroli n.1 - 31046 ODERZO (TV)

Triggiano, 23 ottobre 2020

Certificato n° 20LA33445

CERTIFICATO ANALISI

			Т	ı
Tellurio		μg/l	< 1	
Metodo di analisi di riferimento: UNI EN ISO 1729	4-2:2016			
	limite di quantificazione: 1		incertezza:	
			1	
/anadio Metodo di analisi di riferimento: UNI EN ISO 1729	04.2:2046	μg/l	1,7	
Metodo di analisi di riferimento: UNI EN 150 1725	44-2:2016 			
	limite di quantificazione: 1		incertezza:	
Zinco			- 4	2000
Metodo di analisi di riferimento: UNI EN ISO 1729	04-2:2016	μg/l	< 1	3000
	limite di quantificazione: 1		incertezza:	
Benzene		μg/l	< 0,1	1
Metodo di analisi di riferimento: UNI EN ISO 1568	0:2005	P9/1	(0,1	
	limite di quantificazione: 0,1		incertezza:	
Etilbenzene		μg/l	< 0,1	50
Metodo di analisi di riferimento: UNI EN ISO 1568	0:2005	Fa.	3,1	
	limite di quantificazione: 0,1		incertezza:	
Stirene		μg/l	< 0,1	25
Metodo di analisi di riferimento: UNI EN ISO 1568	0:2005		- /	!
	limite di quantificazione: 0,1		incertezza:	
Toluene		μg/l	< 0,1	15
Metodo di analisi di riferimento: UNI EN ISO 1568	0:2005			
	limite di quantificazione: 0,1		incertezza:	
	iiiiile di quantincazione. 0,1		IIICertezza.	
p-Xilene		μg/l	< 0,1	10
Metodo di analisi di riferimento: UNI EN ISO 1568	0:2005			
	limite di quantificazione: 0,1		incertezza:	
	mino di quantinodeo.o.		oortozza.	
Benzo(a)antracene		μg/l	< 0,01	0,1
Metodo di analisi di riferimento: EPA 8270E			•	•
	limite di quantificazione: 0,01		incertezza:	

Benzo(a)pirene		μg/l	< 0,001	0,01
Metodo di analisi di riferimento: EPA 8270E				
	limite di quantificazione: 0,001		incertezza:	

Benzo(b)fluorantene		μg/l	< 0,01	0,1
Metodo di analisi di riferimento: EPA 8270E				
	limite di quantificazione: 0,01		incertezza:	
	• •			

Ordine dei CHIMICI e dei FISICI della Prov. di Treviso n° A093 Codice Fiscale GSTDRN42R12H823B P.IVA 01627660267 Via Pirzio Biroli n.1 - 31046 ODERZO (TV)

Triggiano, 23 ottobre 2020

Certificato n° 20LA33445

CERTIFICATO ANALISI

			ı	ı
Benzo(k)fluorantene		μg/l	< 0,005	0,05
Metodo di analisi di riferimento: EPA 8270E				
limite di q	uantificazione: 0,005		incertezza:	
Daniel de Nacelles			10.004	
Benzo(g,h,i)perilene Metodo di analisi di riferimento: EPA 8270E		μg/l	< 0,001	0,01
Metodo di analisi di menmento. El A 0270E				
limite di q	uantificazione: 0,001		incertezza:	
Crisene		<u>μ</u> g/l	< 0,01	5
Metodo di analisi di riferimento: EPA 8270E			2,2 1	<u> </u>
limita di a	uantificazione: 0,01		incertezza:	
iii iiie ui q	dantinicazione. 0,01		incertezza.	
Dibenzo(a,h)antracene		μg/l	< 0,001	0,01
Metodo di analisi di riferimento: EPA 8270E				
limite di q	uantificazione: 0,001		incertezza:	
				1
ndeno(1,2,3-c,d)pirene		μg/l	< 0,01	0,1
Metodo di analisi di riferimento: EPA 8270E				
limite di q	uantificazione: 0,01		incertezza:	
Pirene		μg/l	< 0,01	50
Metodo di analisi di riferimento: EPA 8270E		дул	< 0,01	30
limite di q	uantificazione: 0,01		incertezza:	
Sommatoria IPA (punto 38, tabella 2, allegato 5, t	itolo V d. Lgs 152/2006)	μg/l	< 0,01	0,1
Metodo di analisi di riferimento: EPA 8270E			'	<u>'</u>
limite di q	uantificazione: 0,01		incertezza:	
			1	
Clorometano		μg/l	< 0,1	1,5
Metodo di analisi di riferimento: UNI EN ISO 15680:2005				
limite di q	uantificazione: 0,1		incertezza:	
Cloroformio (triclorometano)		μg/l	< 0,01	0,15
Metodo di analisi di riferimento: UNI EN ISO 15680:2005				
limite di q	uantificazione: 0,01		incertezza:	
Name alledella			10.05	
Cloruro di vinile Metodo di analisi di riferimento: UNI EN ISO 15680:2005		μg/l	< 0,05	0,5
limite di q	uantificazione: 0,05		incertezza:	
I,2 - Dicloroetano		μg/l	< 0,1	3
Metodo di analisi di riferimento: UNI EN ISO 15680:2005		ra''	- 0,1	
limite di q	uantificazione: 0,1		incertezza:	

Ordine dei CHIMICI e dei FISICI della Prov. di Treviso n° A093 Codice Fiscale GSTDRN42R12H823B P.IVA 01627660267 Via Pirzio Biroli n.1 - 31046 ODERZO (TV)

Triggiano, 23 ottobre 2020

Certificato n° 20LA33445

CERTIFICATO ANALISI

1,1 - Dicloroetilene	μg/l	< 0,005	0,05
Metodo di analisi di riferimento: UNI EN ISO 15680:2005	μ9/1	- 0,000	0,03
limite di quantificazione: 0,005		incertezza:	
ricloroetilene	μg/l	< 0,1	1,5
Metodo di analisi di riferimento: UNI EN ISO 15680:2005			
limite di quantificazione: 0,1		incertezza:	
etracloroetilene	μg/l	< 0,1	1,1
Metodo di analisi di riferimento: UNI EN ISO 15680:2005			
limite di quantificazione: 0,1		incertezza:	
acalarahutadiana (UCDD)	/!	4 0 04	0.45
saclorobutadiene (HCBD) Metodo di analisi di riferimento: UNI EN ISO 15680:2005	μg/l	< 0,01	0,15
limite di quantificazione: 0,01		incertezza:	
ommatoria organoalogenati (punto 47, tabella 2, allegato 5, titolo V d. Lgs			
52/2006)	μg/l	< 1	10
Metodo di analisi di riferimento: UNI EN ISO 15680:2005			
limite di quantificazione: 1		incertezza:	
			ı
1 - Dicloroetano	µg/l	< 0,1	810
Metodo di analisi di riferimento: UNI EN ISO 15680:2005			
limite di quantificazione: 0,1		incertezza:	
,2 - Dicloroetilene	μg/l	< 0,1	60
Metodo di analisi di riferimento: UNI EN ISO 15680:2005	ру/і ————————————————————————————————————	\ 0,1	00
limite di quantificazione: 0,1		incertezza:	
,2 - Dicloropropano	μg/l	< 0,01	0,15
Metodo di analisi di riferimento: UNI EN ISO 15680:2005		,	
limite di quantificazione: 0,01		incertezza:	
iii nie di quantinoazione. 0,01		incertezza.	
,1,2 - Tricloroetano	μg/l	< 0,01	0,2
Metodo di analisi di riferimento: UNI EN ISO 15680:2005		•	·
limite di quantificazione: 0,01		incertezza:	
		1	I
,2,3 - Tricloropropano	μg/l	< 0,001	0,001
Metodo di analisi di riferimento: UNI EN ISO 15680:2005			
limite di quantificazione: 0,001		incertezza:	
4.0.0 Tetra demostra		. 0 60=	
1,2,2 - Tetracloroetano Metodo di analisi di riferimento: UNI EN ISO 15680:2005	μg/l	< 0,005	0,05
metodo di amaisi di Meninerito. Oni En 150 15000.2005			
limite di quantificazione: 0,005		incertezza:	

Ordine dei CHIMICI e dei FISICI della Prov. di Treviso n° A093 Codice Fiscale GSTDRN42R12H823B P.IVA 01627660267 Via Pirzio Biroli n.1 - 31046 ODERZO (TV)

Triggiano, 23 ottobre 2020

Certificato n° 20LA33445

CERTIFICATO ANALISI

Tribromomotono		< 0.04	
Fribromometano Metodo di analisi di riferimento: UNI EN ISO 15680:2005	µg/I	< 0,01	0,3
limite di quantificazione: 0,01		incertezza:	
1,2 - Dibromoetano	μg/l	< 0,001	0,001
Metodo di analisi di riferimento: UNI EN ISO 15680:2005		5,555	
limite di quantificazione: 0,001		incertezza:	
ilmite di quantificazione. 0,001		incertezza.	
Dibromoclorometano	μg/l	< 0,01	0,13
Metodo di analisi di riferimento: UNI EN ISO 15680:2005			
limite di quantificazione: 0,01		incertezza:	
		ı	
Bromodiclorometano	μg/l	< 0,01	0,17
Metodo di analisi di riferimento: UNI EN ISO 15680:2005			
limite di quantificazione: 0,01		incertezza:	
Nitrobenzene		< 0.2	2.5
Metodo di analisi di riferimento: EPA 8260 rev 3 2006	µg/I	< 0,3	3,5
limite di quantificazione: 0,3		incertezza:	
,2 - Dinitrobenzene	μg/l	< 0,3	15
Metodo di analisi di riferimento: EPA 8260 rev 3 2006		· I	I
limite di quantificazione: 0,3		incertezza:	
,3- dinitrobenzene	μg/l	< 0,3	3,7
Metodo di analisi di riferimento: EPA 8260 rev 3 2006			
limite di quantificazione: 0,3		incertezza:	
Cloronitrobenzeni (ognumo)	 μg/l	< 0,05	0,5
Metodo di analisi di riferimento: EPA 8260 rev 3 2006	μ9/1	< 0,03	0,3
limite di quantificazione: 0,05		incertezza:	
Monoclorobenzene	μg/l	< 0,1	40
Metodo di analisi di riferimento: UNI EN ISO 15680:2005			
limite di quantificazione: 0,1		incertezza:	
2 dialarahanyana	="	< 0.4	070
,2 - diclorobenzene Metodo di analisi di riferimento: UNI EN ISO 15680:2005	µg/I	< 0,1	270
limite di quantificazione: 0,1		incertezza:	
,4 - diclorobenzene	μg/l	< 0,05	0,5
Metodo di analisi di riferimento: UNI EN ISO 15680:2005	10	-,-•	
limite di quantificazione: 0,05		incertezza:	

Ordine dei CHIMICI e dei FISICI della Prov. di Treviso n° A093 Codice Fiscale GSTDRN42R12H823B P.IVA 01627660267 Via Pirzio Biroli n.1 - 31046 ODERZO (TV)

Triggiano, 23 ottobre 2020

Certificato n° 20LA33445

CERTIFICATO ANALISI

,2,4 - Triclorobenzene		μg/l	< 0,1	190
Metodo di analisi di riferimento: UNI EN ISO 1568	0:2005	F3**	7 0,1	
	limite di quantificazione: 0,1		incertezza:	
	imite di quantincazione. 0, i		incertezza.	
,2,4,5 - Tetraclorobenzene		μg/l	< 0,1	1,8
Metodo di analisi di riferimento: EPA 8270E			•	•
	limite di quantificazione: 0,1		incertezza:	
entaclorobenzene		μg/l	< 0,5	5
Metodo di analisi di riferimento: EPA 8270E				
	limite di quantificazione: 0,5		incertezza:	
saclorobenzene (HCB)		μg/l	< 0,001	0,01
Metodo di analisi di riferimento: EPA 8270E				
	limite di quantificazione: 0,001		incertezza:	
- clorofenolo		μg/l	<1	180
Metodo di analisi di riferimento: EPA 8270E		L9.1		
	limite di quantificazione: 1		incertezza:	
,4 - Diclorofenolo		μg/l	< 1	110
Metodo di analisi di riferimento: EPA 8270E			,	·
	limite di quantificazione: 1		incertezza:	
,4,6 - Triclorofenolo		μg/l	< 0,5	5
Metodo di analisi di riferimento: EPA 8270E			•	·
	limite di quantificazione: 0,5		incertezza:	
entaclorofenolo		μg/l	< 0,05	0,5
Metodo di analisi di riferimento: EPA 8270E			.,	
	limite di quantificazione: 0,05		incertezza:	
lacior		ug/l	< 0,01	0,1
Metodo di analisi di riferimento: EPA 8270E		μg/l	< 0,01	0,1
	limite di quantificazione: 0,01		incertezza:	
ldrin		μg/l	< 0,003	0,03
Metodo di analisi di riferimento: EPA 8270E		10.	-,	
	limite di quantificazione: 0,003		incertezza:	
trazina		μg/l	< 0,01	0,3
Metodo di analisi di riferimento: EPA 8270E		· -	·	
	limite di quantificazione: 0,01		incertezza:	

Ordine dei CHIMICI e dei FISICI della Prov. di Treviso n° A093 Codice Fiscale GSTDRN42R12H823B P.IVA 01627660267 Via Pirzio Biroli n.1 - 31046 ODERZO (TV)

Triggiano, 23 ottobre 2020

Certificato n° 20LA33445

CERTIFICATO ANALISI

			T
Alfa-esacioroesano	μg/l	< 0,01	0,1
Metodo di analisi di riferimento: EPA 8270E			
limite di quantificazione: 0,01		incertezza:	
Beta-esacloroesano		1004	0.4
Metodo di analisi di riferimento: EPA 8270E	μg/l	< 0,01	0,1
, , , , , , , , , , , , , , , , , , ,			
limite di quantificazione: 0,01		incertezza:	
Gamma-esacloroesano (lindano)	μg/l	< 0,01	0,1
Metodo di analisi di riferimento: EPA 8270E		,	
limite di quantificazione: 0,01		incertezza:	
Clordano	ug/l	< 0,01	0,1
Metodo di analisi di riferimento: EPA 8270E	μg/l	~ 0,0 I	0,1
limite di quantificazione: 0,01		incertezza:	
DDD, DDT, DDE	μg/l	< 0,01	0,1
Metodo di analisi di riferimento: EPA 8270E			
limite di quantificazione: 0,01		incertezza:	
Dieldrin	μg/l	< 0,003	0,03
Metodo di analisi di riferimento: EPA 8270E			
limite di quantificazione: 0,003		incertezza:	
Endrin	μg/l	< 0,01	0,1
Metodo di analisi di riferimento: EPA 8270E	P9,.	30,01	<u> </u>
limite di quantificazione: 0,01		incertezza:	
Sommatoria fitofarmaci (punto 86, tabella 2, allegato 5, titolo V d. Lgs	μg/l	< 0,05	0,5
152/2006) Metodo di analisi di riferimento: EPA 8270E		,	
limite di quantificazione: 0,05		incertezza:	
Clorpirifos	μg/l	< 0,1	
Metodo di analisi di riferimento: EPA 8270E			
limite di quantificazione: 0,1		incertezza:	
Dimetoato EPA 00325	μg/l	< 0,1	
Metodo di analisi di riferimento: EPA 8270E			
limite di quantificazione: 0,1		incertezza:	
Deltametrina	μg/l	< 0,1	
Metodo di analisi di riferimento: EPA 8270E	µу/і	> 0, 1	
limite di quantificazione: 0,1		incertezza:	

Ordine dei CHIMICI e dei FISICI della Prov. di Treviso n° A093 Codice Fiscale GSTDRN42R12H823B P.IVA 01627660267 Via Pirzio Biroli n.1 - 31046 ODERZO (TV)

Triggiano, 23 ottobre 2020

Certificato n° 20LA33445

CERTIFICATO ANALISI

(valido a tutti gli effetti come da D. L. n° 842/28)

Fention		μg/l	< 0,1	
Metodo di analisi di riferimento: EPA 8270E				
	limite di quantificazione: 0,1		incertezza:	
Oxifluorfen		μg/l	< 0,1	
Metodo di analisi di riferimento: EPA 8270E				
	limite di quantificazione: 0,1		incertezza:	
Paration		μg/l	< 0,1	
Metodo di analisi di riferimento: EPA 8270E				<u>.</u>
	limite di quantificazione: 0,1		incertezza:	
Simazina		μg/l	< 0,1	
Metodo di analisi di riferimento: EPA 8270E			•	•
	limite di quantificazione: 0,1		incertezza:	
Sommatoria pesticidi fosforati		μg/l	< 0,1	
Metodo di analisi di riferimento: EPA 8270E				•
	limite di quantificazione: 0,1		incertezza:	
PCB		μg/l	< 0,001	0,01
Metodo di analisi di riferimento: APAT CNR IRSA	5110 Man 29 2003			
	limite di quantificazione: 0,001		incertezza:	

Note:

La determinazione dei metalli è stata effettuata sul campione filtrato e acidificato. Nel calcolo della concentrazione degli elementi in traccia non viene considerato il recupero determinato dal laboratorio il quale risulta essere compreso tra 90 e 110 %.

L'incertezza di misura riportata nel presente certificato di analisi è espressa come incertezza estesa con un fattore di copertura (k) pari a 2 corrispondente a un livello di fiducia di circa 95%.

I risultati delle analisi si riferiscono ESCLUSIVAMENTE al campione esaminato; si declina ogni responsabilità nei casi di utilizzo del presente atto in difformità agli usi consentiti dalla Legge. Le analisi da eseguire sono state commissionate dal committente e dunque si declina ogni responsabilità in merito alla completezza delle informazioni.

Le analisi sono state eseguite dalla CHIMIE Srl e i LABORATORI ANALISI CHIMICHE DOTT. ADRIANO GIUSTO - SERVIZI AMBIENTE S.R.L., accreditato al n. 0128L, del gruppo LIFEANALYTICS.

Il chimico

Laboratorio Analisi Chimiche Dott. A. Giusto Servizi Ambiente S.r.I. - Chimie S.r.I. Gruppo LIFEANALYTICS

Tel. 0804621899 – info.chimie@lifeanalytics.it Laboratori Conformi alla norma UNI CEI EN ISO/IEC 17025:2018 Laboratori Certificati UNI EN ISO 9001:2015 e UNI EN ISO 14001:2015

Ordine dei CHIMICI e dei FISICI della Prov. di Treviso nº A093 Codice Fiscale GSTDRN42R12H823B P.IVA 01627660267 Via Pirzio Biroli n.1 - 31046 ODERZO (TV)

Triggiano, 23 ottobre 2020

Certificato n° 20LA33447

CERTIFICATO ANALISI

(valido a tutti gli effetti come da D. L. n° 842/28)

COMMITTENTE: CAVED Srl, C.da Formica - Brindisi

ETICHETTA: Campione di acqua di falda prelevato dal **pozzo B** della CAVED Srl sita in c.da Formica (BR)

Data ricezione campione: 23/09/20 Profondità della falda: 41,4 m

Il campione è stato prelevato dal tecnico dello studio CHIMIE Srl, P. Chim. G. Cipriano come da verbale nº 64/09

RISULTATI

PARAMETRO	unità di misura	valore determinato	D. Lgs. 152/06 Tab. 2 allegato 5 alla parte IV Titolo V
рН		7,08	
Metodo di analisi di riferimento: UNI EN ISO 10523:2012			•
limite di quantificazione: > 1 e < 13		incertezza: ±	0,12
Temperatura	°C	19,3	
Metodo di analisi di riferimento: APAT CNR IRSA 2100 Man 29 2003			·
limite di quantificazione: 1		incertezza: ±	0,2
Ossigeno disciolto	mg/l	4,61	
Metodo di analisi di riferimento: Strumentale - Sensore di Ossigeno Disciolto a luminescenza LDO			·
limite di quantificazione: 0,5		incertezza: ±	0,46
Potenziale Redox	mV	170,9	
Metodo di analisi di riferimento: Strumentale - Sensore ORP			
limite di quantificazione: 10		incertezza: ±	17,1
Conducibilità	uS/cm a 20 °C	3300	
Metodo di analisi di riferimento: UNI EN 27888:1995			•
limite di quantificazione: 10		incertezza: ±	66
Ossidabilità O2	mg/l	< 0,5	
Metodo di analisi di riferimento: metodo Tritrimetrico (secondo Kubel), ISTISAN 07/31			•
limite di quantificazione: 0,5		incertezza:	
Domanda biochimica di ossigeno (BOD5) a 20°C senza nitrificazione	mgO ₂ /I	< 0,5	
Metodo di analisi di riferimento: APAT CNR IRSA 5120 Man 29 2003			<u> </u>
limite di quantificazione: 0,5		incertezza:	
Carbonio organico totale (TOC)	mg/l	0,1	
Metodo di analisi di riferimento: APAT CNR IRSA 5040 Man 29 2003			1
limite di quantificazione: 0,1		incertezza:	

Ordine dei CHIMICI e dei FISICI della Prov. di Treviso n° A093 Codice Fiscale GSTDRN42R12H823B P.IVA 01627660267 Via Pirzio Biroli n.1 - 31046 ODERZO (TV)

Triggiano, 23 ottobre 2020

Certificato n° 20LA33447

CERTIFICATO ANALISI

Durezza totale	°F	66	
Metodo di analisi di riferimento: APAT CNR IRSA 2040 A Man 29 2003		'	•
limite di quantificazione: 5		incertezza: ±	1
ianuri	μg/l	< 1	50
Metodo di analisi di riferimento: APAT CNR IRSA 4070 Man 29 2003			
limite di quantificazione: 1		incertezza:	
luoruri	mg/l	0,32	1,5
Metodo di analisi di riferimento: UNI EN ISO 10304-1:2009	mg/i	0,32	1,0
limite di quantificazione: 0,1		incertezza: ±	0,03
litriti come NO2	μg/l	< 50	500
Metodo di analisi di riferimento: UNI EN ISO 10304-1:2009			I
limite di quantificazione: 50		incertezza:	
iittike ui quankiitazione. 30		поспедда.	
olfati	mg/l	128	250
Metodo di analisi di riferimento: UNI EN ISO 10304-1:2009		!	'
limite di quantificazione: 0,1		incertezza: ±	13
Cloruri	mg/l	840	
Metodo di analisi di riferimento: UNI EN ISO 10304-1:2009			
limite di quantificazione: 0,1		incertezza: ±	84
litrati come NO3		44	
Metodo di analisi di riferimento: UNI EN ISO 10304-1:2009	mg/l	14	
Wicked dramatical Month of No. 514 Et viola 1666 17.2666			
limite di quantificazione: 0,1		incertezza: ±	1
mmoniaca come NH4	mg/l	< 0,05	
Metodo di analisi di riferimento: UNICHIM 2363:2009		\ 0,00	
limite di quantificazione: 0,05		incertezza:	
lluminio	μg/l	< 1	200
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016			
limite di quantificazione: 1		incertezza:	
инко и учинию селоно. Т			
ntimonio	μg/l	< 0,3	5
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016			
limite di quantificazione: 0,3		incertezza:	
		ı	Т
argento	μg/l	<1	10
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016			
limite di quantificazione: 1		incertezza:	

Ordine dei CHIMICI e dei FISICI della Prov. di Treviso n° A093 Codice Fiscale GSTDRN42R12H823B P.IVA 01627660267 Via Pirzio Biroli n.1 - 31046 ODERZO (TV)

Triggiano, 23 ottobre 2020

Certificato n° 20LA33447

CERTIFICATO ANALISI

Arsenico		μg/l	< 1	10
Metodo di analisi di riferimento: UNI EN ISO 17	7294-2:2016			
	limite di quantificazione: 1		incertezza:	
Bario			54	
Metodo di analisi di riferimento: UNI EN ISO 17	7294-2:2016	μg/l	51	
	limite di quantificazione: 1		incertezza: ± 5,1	
Berillio		μg/l	< 0,3	4
Metodo di analisi di riferimento: UNI EN ISO 17	7294-2:2016		-,-	
	limite di quantificazione: 0,3		incertezza:	
	innice di quantinoazione. 0,3		incertezza.	
Boro		μg/l	192	1000
Metodo di analisi di riferimento: UNI EN ISO 17	7294-2:2016			
	limite di quantificazione: 1		incertezza: ± 19	
			2 -1	
Cadmio	7004 0.0046	μg/l	< 0,3	5
Metodo di analisi di riferimento: UNI EN ISO 17	7294-2:2016			
	limite di quantificazione: 0,3		incertezza:	
Calcio		mg/l	128	
Metodo di analisi di riferimento: UNI EN ISO 17	7294-2:2016	9/1	120	
	limite di quantificazione: 0,001		incertezza: ± 13	
Cobalto		μg/l	< 1	50
Metodo di analisi di riferimento: UNI EN ISO 17	7294-2:2016			'
	limite di quantificazione: 1		incertezza:	
Cromo totale		μg/l	<1	50
Metodo di analisi di riferimento: UNI EN ISO 17	7294-2:2016			
	limite di quantificazione: 1		incertezza:	
Promo esavalente		μg/l	< 0,5	5
Metodo di analisi di riferimento: APAT CNR IRS	SA n° 3150 Man 29 2003	ру/і	~ U,U	
	limite di quantificazione: 0,5		incertezza:	
erro		μg/l	< 1	200
Metodo di analisi di riferimento: UNI EN ISO 17	7294-2:2016		L	
	limite di quantificazione: 1		incertezza:	
lagnesio e e e e e e e e e e e e e e e e e e e		mg/l	82	
Metodo di analisi di riferimento: UNI EN ISO 17	7294-2:2016			
	limite di quantificazione: 0,001		incertezza: ± 8	

Ordine dei CHIMICI e dei FISICI della Prov. di Treviso n° A093 Codice Fiscale GSTDRN42R12H823B P.IVA 01627660267 Via Pirzio Biroli n.1 - 31046 ODERZO (TV)

Triggiano, 23 ottobre 2020

Certificato n° 20LA33447

CERTIFICATO ANALISI

Manganese		μg/l	< 1	50
Metodo di analisi di riferimento: UNI EN ISO 1729	4-2:2016		!	•
	limite di quantificazione: 1		incertezza:	
				T
lercurio		μg/l	< 0,1	1
Metodo di analisi di riferimento: UNI EN ISO 1729	4-2:2016			
	limite di quantificazione: 0,1		incertezza:	
		μg/l	9,0	
Metodo di analisi di riferimento: UNI EN ISO 1729	4-2:2016	μ9/1	3,0	
	limite di quantificazione: 1		incertezza: ± 0,	9
Nichelio		μg/l	< 1	20
Metodo di analisi di riferimento: UNI EN ISO 1729	4-2:2016			
	limite di quantificazione: 1		incertezza:	
	iiiiic di quantinoazione.		moortozza.	
Piombo		μg/l	< 1	10
Metodo di analisi di riferimento: UNI EN ISO 1729	4-2:2016			·
	limite di quantificazione: 1		incertezza:	
	·			
otassio		mg/l	19	
Metodo di analisi di riferimento: UNI EN ISO 1729	4-2:2016			
	limite di quantificazione: 0,001		incertezza: ± 2	
Rame		μg/l	< 1	1000
Metodo di analisi di riferimento: UNI EN ISO 1729	4-2:2016	F9,.	, ,	1000
	limite di quantificazione: 1		incertezza:	
Selenio		μg/l	< 0,3	10
Metodo di analisi di riferimento: UNI EN ISO 1729	4-2:2016			I
	limite di quantificazione: 0,3		incertezza:	
	iiiiie di quantineazione. 0,0		mocrtezza.	
odio		mg/l	559	
Metodo di analisi di riferimento: UNI EN ISO 1729	4-2:2016			
	limite di quantificazione: 0,001		incertezza: ± 56	i
Stagno	4.0.0040	μg/l	< 1	
Metodo di analisi di riferimento: UNI EN ISO 1729	4-2:2016			
	limite di quantificazione: 1		incertezza:	
Metodo di analisi di riferimento: UNI EN ISO 1729	4-2-2016	μg/l	< 0,2	2
metodo di anansi di meninento. Oni En 150 1729	72.2010			
	limite di quantificazione: 0,2		incertezza:	

Ordine dei CHIMICI e dei FISICI della Prov. di Treviso n° A093 Codice Fiscale GSTDRN42R12H823B P.IVA 01627660267 Via Pirzio Biroli n.1 - 31046 ODERZO (TV)

Triggiano, 23 ottobre 2020

Certificato n° 20LA33447

CERTIFICATO ANALISI

Tellurio		μg/l	< 1	
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2	2016			
	limite di quantificazione: 1		incertezza:	
Vanadio			2.2	
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2	2016	μg/l	2,3	
	limite di quantificazione: 1		incertezza: ± 0,2	
Zinco		<u>μ</u> g/l	< 1	3000
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2	2016		I	I
	limite di quantificazione: 1		incertezza:	
	iiiiiic di quantineazione.		mocrtezza.	
Benzene		μg/l	< 0,1	1
Metodo di analisi di riferimento: UNI EN ISO 15680:200	05			
	limite di quantificazione: 0,1		incertezza:	
Etilbenzene Metodo di analisi di riferimento: UNI EN ISO 15680:200	06	μg/l	< 0,1	50
Metodo di analisi di Illerimento. Otti Ett 130 13000.200				
	limite di quantificazione: 0,1		incertezza:	
Stirene		μg/l	< 0,1	25
Metodo di analisi di riferimento: UNI EN ISO 15680:200	05	F-9··	3,1	
	F 1 F - 15 - 0.4			
	limite di quantificazione: 0,1		incertezza:	
Toluene		μg/l	< 0,1	15
Metodo di analisi di riferimento: UNI EN ISO 15680:200	05		·	
	limite di quantificazione: 0,1		incertezza:	
				I
p-Xilene Metodo di analisi di riferimento: UNI EN ISO 15680:200	05	μg/l	< 0,1	10
Metodo di analisi di riferimento: UNI EN ISO 15660:200	<i></i>			
	limite di quantificazione: 0,1		incertezza:	
Benzo(a)antracene		μg/l	< 0,01	0,1
Metodo di analisi di riferimento: EPA 8270E		р у, г	3 0,01	0,1
	limite di quantificazione: 0,01		incertezza:	
Benzo(a)pirene		μg/l	< 0,001	0,01
Metodo di analisi di riferimento: EPA 8270E			· · · · · · · · · · · · · · · · · · ·	
	limite di quantificazione: 0,001		incertezza:	
	· · · · · · · · · · · · · · · · · · ·			I
Benzo(b)fluorantene		μg/l	< 0,01	0,1
Metodo di analisi di riferimento: EPA 8270E				
	limite di quantificazione: 0,01		incertezza:	

Ordine dei CHIMICI e dei FISICI della Prov. di Treviso n° A093 Codice Fiscale GSTDRN42R12H823B P.IVA 01627660267 Via Pirzio Biroli n.1 - 31046 ODERZO (TV)

Triggiano, 23 ottobre 2020

Certificato n° 20LA33447

CERTIFICATO ANALISI

Benzo(k)fluorantene		μg/l	< 0,005	0,05
Metodo di analisi di riferimento: EPA 8270E				I
limite di qu	antificazione: 0,005		incertezza:	
enzo(g,h,i)perilene		μg/l	< 0,001	0,01
Metodo di analisi di riferimento: EPA 8270E		ру/і	< 0,001	0,01
limite di qu	antificazione: 0,001		incertezza:	
risene		μg/l	< 0,01	5
Metodo di analisi di riferimento: EPA 8270E		рул	< 0,01	3
limite di au	uantificazione: 0,01		incertezza:	
milic di qu	antinoazione. 0,01		moortozza.	
Dibenzo(a,h)antracene		μg/l	< 0,001	0,01
Metodo di analisi di riferimento: EPA 8270E				
limite di qu	antificazione: 0,001		incertezza:	
ndeno(1,2,3-c,d)pirene		μg/l	< 0,01	0,1
Metodo di analisi di riferimento: EPA 8270E			5,5.1	
limite di qu	antificazione: 0,01		incertezza:	
Pirene		μg/l	< 0,01	50
Metodo di analisi di riferimento: EPA 8270E			'	!
limite di qu	nantificazione: 0,01		incertezza:	
ommatoria IPA (punto 38, tabella 2, allegato 5, ti	itolo V d. Lgs 152/2006)	μg/l	< 0,01	0,1
Metodo di analisi di riferimento: EPA 8270E				
limite di qu	antificazione: 0,01		incertezza:	
Clorometano			104	4.5
Metodo di analisi di riferimento: UNI EN ISO 15680:2005		μg/l	< 0,1	1,5
	15			
iimite ai qu	antificazione: 0,1		incertezza:	
cloroformio (triclorometano)		μg/l	< 0,01	0,15
Metodo di analisi di riferimento: UNI EN ISO 15680:2005				
limite di qu	antificazione: 0,01		incertezza:	
Cloruro di vinile		μg/l	< 0,05	0,5
Metodo di analisi di riferimento: UNI EN ISO 15680:2005			• • •	
limite di qu	nantificazione: 0,05		incertezza:	
,2 - Dicloroetano		uall	< 0,1	3
Metodo di analisi di riferimento: UNI EN ISO 15680:2005		μg/l	< 0,1	
	contifications, 0.1		incorto	
limite ai qu	antificazione: 0,1		incertezza:	

Ordine dei CHIMICI e dei FISICI della Prov. di Treviso n° A093 Codice Fiscale GSTDRN42R12H823B P.IVA 01627660267 Via Pirzio Biroli n.1 - 31046 ODERZO (TV)

Triggiano, 23 ottobre 2020

Certificato n° 20LA33447

CERTIFICATO ANALISI

1,1 - Dicloroetilene	μg/l	< 0,005	0,05
Metodo di analisi di riferimento: UNI EN ISO 15680:2005	μ9/1	- 0,000	0,03
limite di quantificazione: 0,005		incertezza:	
ricloroetilene	μg/l	< 0,1	1,5
Metodo di analisi di riferimento: UNI EN ISO 15680:2005			
limite di quantificazione: 0,1		incertezza:	
etracloroetilene	μg/l	< 0,1	1,1
Metodo di analisi di riferimento: UNI EN ISO 15680:2005			
limite di quantificazione: 0,1		incertezza:	
acalarahutadiana (UCDD)	/!	4 0 04	0.45
saclorobutadiene (HCBD) Metodo di analisi di riferimento: UNI EN ISO 15680:2005	μg/l	< 0,01	0,15
limite di quantificazione: 0,01		incertezza:	
ommatoria organoalogenati (punto 47, tabella 2, allegato 5, titolo V d. Lgs			
52/2006)	μg/l	< 1	10
Metodo di analisi di riferimento: UNI EN ISO 15680:2005			
limite di quantificazione: 1		incertezza:	
			ı
1 - Dicloroetano	μg/l	< 0,1	810
Metodo di analisi di riferimento: UNI EN ISO 15680:2005			
limite di quantificazione: 0,1		incertezza:	
,2 - Dicloroetilene	μg/l	< 0,1	60
Metodo di analisi di riferimento: UNI EN ISO 15680:2005	ру/і ————————————————————————————————————	\ 0,1	00
limite di quantificazione: 0,1		incertezza:	
,2 - Dicloropropano	μg/l	< 0,01	0,15
Metodo di analisi di riferimento: UNI EN ISO 15680:2005		,	
limite di quantificazione: 0,01		incertezza:	
iii nie di quantinoazione. 0,01		incertezza.	
,1,2 - Tricloroetano	μg/l	< 0,01	0,2
Metodo di analisi di riferimento: UNI EN ISO 15680:2005		•	·
limite di quantificazione: 0,01		incertezza:	
		1	I
,2,3 - Tricloropropano	μg/l	< 0,001	0,001
Metodo di analisi di riferimento: UNI EN ISO 15680:2005			
limite di quantificazione: 0,001		incertezza:	
4.0.0 Tetra demostrare		. 0 60=	
1,2,2 - Tetracloroetano Metodo di analisi di riferimento: UNI EN ISO 15680:2005	µg/l	< 0,005	0,05
metodo di amaisi di Meninerito. Oni En 150 15000.2005			
limite di quantificazione: 0,005		incertezza:	

Ordine dei CHIMICI e dei FISICI della Prov. di Treviso n° A093 Codice Fiscale GSTDRN42R12H823B P.IVA 01627660267 Via Pirzio Biroli n.1 - 31046 ODERZO (TV)

Triggiano, 23 ottobre 2020

Certificato n° 20LA33447

CERTIFICATO ANALISI

Tribromomotono		< 0.04	
Fribromometano Metodo di analisi di riferimento: UNI EN ISO 15680:2005	µg/I	< 0,01	0,3
limite di quantificazione: 0,01		incertezza:	
1,2 - Dibromoetano	μg/l	< 0,001	0,001
Metodo di analisi di riferimento: UNI EN ISO 15680:2005		5,555	
limite di quantificazione: 0,001		incertezza:	
ilmite di quantificazione. 0,001		incertezza.	
Dibromoclorometano	μg/l	< 0,01	0,13
Metodo di analisi di riferimento: UNI EN ISO 15680:2005			
limite di quantificazione: 0,01		incertezza:	
		ı	
Bromodiclorometano	μg/l	< 0,01	0,17
Metodo di analisi di riferimento: UNI EN ISO 15680:2005			
limite di quantificazione: 0,01		incertezza:	
Nitrobenzene		< 0.2	2.5
Metodo di analisi di riferimento: EPA 8260 rev 3 2006	µg/I	< 0,3	3,5
limite di quantificazione: 0,3		incertezza:	
,2 - Dinitrobenzene	μg/l	< 0,3	15
Metodo di analisi di riferimento: EPA 8260 rev 3 2006		· I	I
limite di quantificazione: 0,3		incertezza:	
,3- dinitrobenzene	μg/l	< 0,3	3,7
Metodo di analisi di riferimento: EPA 8260 rev 3 2006			
limite di quantificazione: 0,3		incertezza:	
Cloronitrobenzeni (ognumo)	 μg/l	< 0,05	0,5
Metodo di analisi di riferimento: EPA 8260 rev 3 2006	μ9/1	< 0,03	0,3
limite di quantificazione: 0,05		incertezza:	
Monoclorobenzene	μg/l	< 0,1	40
Metodo di analisi di riferimento: UNI EN ISO 15680:2005			
limite di quantificazione: 0,1		incertezza:	
2 dialarahanyana	="	< 0.4	070
,2 - diclorobenzene Metodo di analisi di riferimento: UNI EN ISO 15680:2005	µg/I	< 0,1	270
limite di quantificazione: 0,1		incertezza:	
,4 - diclorobenzene	μg/l	< 0,05	0,5
Metodo di analisi di riferimento: UNI EN ISO 15680:2005	10	-,-•	
limite di quantificazione: 0,05		incertezza:	

Ordine dei CHIMICI e dei FISICI della Prov. di Treviso n° A093 Codice Fiscale GSTDRN42R12H823B P.IVA 01627660267 Via Pirzio Biroli n.1 - 31046 ODERZO (TV)

Triggiano, 23 ottobre 2020

Certificato n° 20LA33447

CERTIFICATO ANALISI

,2,4 - Triclorobenzene		μg/l	< 0,1	190
Metodo di analisi di riferimento: UNI EN ISO 1568	0:2005			
	limite di quantificazione: 0,1		incertezza:	
2.4.5. Totaloushamana			104	10
2,4,5 - Tetraclorobenzene Metodo di analisi di riferimento: EPA 8270E		µg/l	< 0,1	1,8
Motodo di dilanoi di monmonto. El 71 02102				
	limite di quantificazione: 0,1		incertezza:	
entaclorobenzene		μg/l	< 0,5	5
Metodo di analisi di riferimento: EPA 8270E				
	limite di quantificazione: 0,5		incertezza:	
saclorobenzene (HCB)		μg/l	< 0,001	0,01
Metodo di analisi di riferimento: EPA 8270E			l	
	limite di quantificazione: 0,001		incertezza:	
- clorofenolo		μg/l	<1	180
Metodo di analisi di riferimento: EPA 8270E		F9:		
	limite di quantificazione: 1		incertezza:	
,4 - Diclorofenolo		μg/l	< 1	110
Metodo di analisi di riferimento: EPA 8270E			-	'
	limite di quantificazione: 1		incertezza:	
,4,6 - Triclorofenolo		μg/l	< 0,5	5
Metodo di analisi di riferimento: EPA 8270E			-	
	limite di quantificazione: 0,5		incertezza:	
entaclorofenolo		μg/l	< 0,05	0,5
Metodo di analisi di riferimento: EPA 8270E		1-5.	1 0,00	
	limite di quantificazione: 0,05		incertezza:	
lacior		μg/l	< 0,01	0,1
Metodo di analisi di riferimento: EPA 8270E		ру/і	< 0,01	0,1
	limite di quantificazione: 0,01		incertezza:	
ldrin		P	4 0 000	0.00
Metodo di analisi di riferimento: EPA 8270E		μg/l	< 0,003	0,03
	limite di monette mi co coco			
	limite di quantificazione: 0,003		incertezza:	
trazina		μg/l	< 0,01	0,3
Metodo di analisi di riferimento: EPA 8270E				
	limite di quantificazione: 0,01		incertezza:	

Ordine dei CHIMICI e dei FISICI della Prov. di Treviso n° A093 Codice Fiscale GSTDRN42R12H823B P.IVA 01627660267 Via Pirzio Biroli n.1 - 31046 ODERZO (TV)

Triggiano, 23 ottobre 2020

Certificato n° 20LA33447

CERTIFICATO ANALISI

			T
Alfa-esacioroesano	μg/l	< 0,01	0,1
Metodo di analisi di riferimento: EPA 8270E			
limite di quantificazione: 0,01		incertezza:	
Beta-esacloroesano		1004	0.4
Metodo di analisi di riferimento: EPA 8270E	μg/l	< 0,01	0,1
, , , , , , , , , , , , , , , , , , ,			
limite di quantificazione: 0,01		incertezza:	
Gamma-esacloroesano (lindano)	μg/l	< 0,01	0,1
Metodo di analisi di riferimento: EPA 8270E		,	
limite di quantificazione: 0,01		incertezza:	
Clordano	ug/l	< 0,01	0,1
Metodo di analisi di riferimento: EPA 8270E	μg/l	~ 0,0 I	0,1
limite di quantificazione: 0,01		incertezza:	
DDD, DDT, DDE	μg/l	< 0,01	0,1
Metodo di analisi di riferimento: EPA 8270E			
limite di quantificazione: 0,01		incertezza:	
Dieldrin	μg/l	< 0,003	0,03
Metodo di analisi di riferimento: EPA 8270E			
limite di quantificazione: 0,003		incertezza:	
Endrin	μg/l	< 0,01	0,1
Metodo di analisi di riferimento: EPA 8270E	P9,.	30,01	<u> </u>
limite di quantificazione: 0,01		incertezza:	
Sommatoria fitofarmaci (punto 86, tabella 2, allegato 5, titolo V d. Lgs	μg/l	< 0,05	0,5
152/2006) Metodo di analisi di riferimento: EPA 8270E		,	
limite di quantificazione: 0,05		incertezza:	
Clorpirifos	μg/l	< 0,1	
Metodo di analisi di riferimento: EPA 8270E			
limite di quantificazione: 0,1		incertezza:	
Dimetoato FDA 00325	μg/l	< 0,1	
Metodo di analisi di riferimento: EPA 8270E			
limite di quantificazione: 0,1		incertezza:	
Deltametrina	μg/l	< 0,1	
Metodo di analisi di riferimento: EPA 8270E	µу/і	~ 0, 1	
limite di quantificazione: 0,1		incertezza:	

Ordine dei CHIMICI e dei FISICI della Prov. di Treviso n° A093 Codice Fiscale GSTDRN42R12H823B P.IVA 01627660267 Via Pirzio Biroli n.1 - 31046 ODERZO (TV)

Triggiano, 23 ottobre 2020

Certificato nº 20LA33447

CERTIFICATO ANALISI

(valido a tutti gli effetti come da D. L. n° 842/28)

Fention		μg/l	< 0,1	·	
Metodo di analisi di riferimento: EPA 8270E			-	•	
	limite di quantificazione: 0,1		incertezza:		
Oxifluorfen		uall	< 0,1		
Metodo di analisi di riferimento: EPA 8270E		μg/l	~ 0, 1		
	limite di quantificazione: 0,1		incertezza:		
Paration		μg/l	< 0,1		
Metodo di analisi di riferimento: EPA 8270E				•	
	limite di quantificazione: 0,1		incertezza:		
Simazina		μg/l	< 0,1		
Metodo di analisi di riferimento: EPA 8270E					
	limite di quantificazione: 0,1		incertezza:		
Sommatoria pesticidi fosforati		μg/l	< 0,1		
Metodo di analisi di riferimento: EPA 8270E					
	limite di quantificazione: 0,1		incertezza:		
PCB		μg/l	< 0,001		0,01
Metodo di analisi di riferimento: APAT CNR IRSA 5110	Man 29 2003				
	limite di quantificazione: 0,001		incertezza:		

Note:

La determinazione dei metalli è stata effettuata sul campione filtrato e acidificato. Nel calcolo della concentrazione degli elementi in traccia non viene considerato il recupero determinato dal laboratorio il quale risulta essere compreso tra 90 e 110 %.

L'incertezza di misura riportata nel presente certificato di analisi è espressa come incertezza estesa con un fattore di copertura (k) pari a 2 corrispondente a un livello di fiducia di circa 95%.

I risultati delle analisi si riferiscono ESCLUSIVAMENTE al campione esaminato; si declina ogni responsabilità nei casi di utilizzo del presente atto in difformità agli usi consentiti dalla Legge. Le analisi da eseguire sono state commissionate dal committente e dunque si declina ogni responsabilità in merito alla completezza delle informazioni.

Le analisi sono state eseguite dalla CHIMIE Srl e i LABORATORI ANALISI CHIMICHE DOTT. ADRIANO GIUSTO - SERVIZI AMBIENTE S.R.L., accreditato al n. 0128L, del gruppo LIFEANALYTICS.

Il chimico

Laboratorio Analisi Chimiche Dott. A. Giusto Servizi Ambiente S.r.I. - Chimie S.r.I. Gruppo LIFEANALYTICS

Tel. 0804621899 – info.chimie@lifeanalytics.it Laboratori Conformi alla norma UNI CEI EN ISO/IEC 17025:2018 Laboratori Certificati UNI EN ISO 9001:2015 e UNI EN ISO 14001:2015

Ordine dei CHIMICI e dei FISICI della Prov. di Treviso n° A093 Codice Fiscale GSTDRN42R12H823B P.IVA 01627660267 Via Pirzio Biroli n.1 - 31046 ODERZO (TV)

Triggiano, 23 ottobre 2020

Certificato n° 20LA33448

CERTIFICATO ANALISI

(valido a tutti gli effetti come da D. L. n° 842/28)

COMMITTENTE: CAVED Srl, C.da Formica - Brindisi

ETICHETTA: Campione di acqua di falda prelevato dal **pozzo C** della CAVED Srl sita in c.da Formica (BR)

Data ricezione campione: 23/09/20 Profondità della falda: 41,6 m

Il campione è stato prelevato dal tecnico dello studio CHIMIE Srl, P. Chim. G. Cipriano come da verbale nº 64/09

RISULTATI

PARAMETRO	unità di misura	valore determinato	D. Lgs. 152/06 Tab. 2 allegato 5 alla parte IV Titolo V
рН		7,12	
Metodo di analisi di riferimento: UNI EN ISO 10523:2012			'
limite di quantificazione: > 1 e < 13		incertezza: ±	0,12
Temperatura	°C	19,6	
Metodo di analisi di riferimento: APAT CNR IRSA 2100 Man 29 2003			<u>'</u>
limite di quantificazione: 1		incertezza: ±	0,2
Ossigeno disciolto	mg/l	4,58	
Metodo di analisi di riferimento: Strumentale - Sensore di Ossigeno Disciolto a luminescenza LDO			'
limite di quantificazione: 0,5		incertezza: ±	0,46
Potenziale Redox	mV	181,3	
Metodo di analisi di riferimento: Strumentale - Sensore ORP			•
limite di quantificazione: 10		incertezza: ±	18,1
Conducibilità	uS/cm a 20 °C	3230	
Metodo di analisi di riferimento: UNI EN 27888:1995			
limite di quantificazione: 10		incertezza: ±	64,6
Ossidabilità O2	mg/l	0,95	
Metodo di analisi di riferimento: metodo Tritrimetrico (secondo Kubel), ISTISAN 07/31			
limite di quantificazione: 0,5		incertezza: ±	0,08
Domanda biochimica di ossigeno (BOD5) a 20°C senza nitrificazione	mgO ₂ /I	< 0,5	
Metodo di analisi di riferimento: APAT CNR IRSA 5120 Man 29 2003		-	1
limite di quantificazione: 0,5		incertezza:	
Carbonio organico totale (TOC)	mg/l	0,4	
Metodo di analisi di riferimento: APAT CNR IRSA 5040 Man 29 2003			

Ordine dei CHIMICI e dei FISICI della Prov. di Treviso n° A093 Codice Fiscale GSTDRN42R12H823B P.IVA 01627660267 Via Pirzio Biroli n.1 - 31046 ODERZO (TV)

Triggiano, 23 ottobre 2020

Certificato n° 20LA33448

CERTIFICATO ANALISI

Durezza totale		°F	61	
Metodo di analisi di riferimento: APAT CNR IRSA 2040 A Man 29	9 2003		'	'
limite d	i quantificazione: 5		incertezza: ±	1
ianuri		μg/l	< 1	50
Metodo di analisi di riferimento: APAT CNR IRSA 4070 Man 29 2	2003			
limite d	i quantificazione: 1		incertezza:	
luoruri		mg/l	0,20	1,5
Metodo di analisi di riferimento: UNI EN ISO 10304-1:2009		9	0,20	
limite d	i quantificazione: 0,1		incertezza: ±	0,02
itriti come NO2		μg/l	< 50	500
Metodo di analisi di riferimento: UNI EN ISO 10304-1:2009			Į.	<u>'</u>
limite d	i quantificazione: 50		incertezza:	
olfati		mg/l	128	250
Metodo di analisi di riferimento: UNI EN ISO 10304-1:2009				
limite d	i quantificazione: 0,1		incertezza: ±	13
		_		
Metodo di analisi di riferimento: UNI EN ISO 10304-1:2009		mg/l	770	
Metodo di arialisi di filerimento. Offi EN 130 10304-1.2009				
limite d	i quantificazione: 0,1		incertezza: ±	77
litrati come NO3		mg/l	18	
Metodo di analisi di riferimento: UNI EN ISO 10304-1:2009		-		ļ
limite d	i quantificazione: 0.1		incertezza: ± :	2
innice d	i quantificazione: 0,1		incertezza. ±	2
mmoniaca come NH4		mg/l	< 0,05	
Metodo di analisi di riferimento: UNICHIM 2363:2009			'	'
limite d	i quantificazione: 0,05		incertezza:	
lluminio		μg/l	< 1	200
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016				
limite d	i quantificazione: 1		incertezza:	
ntimonio		μg/l	< 0,3	5
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016		μg/ι	× 0,3] 5
limite d	i quantificazione: 0,3		incertezza:	
rgento		μg/l	< 1	10
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016		1.3.	-	
limite d	i quantificazione: 1		incertezza:	

Ordine dei CHIMICI e dei FISICI della Prov. di Treviso n° A093 Codice Fiscale GSTDRN42R12H823B P.IVA 01627660267 Via Pirzio Biroli n.1 - 31046 ODERZO (TV)

Triggiano, 23 ottobre 2020

Certificato n° 20LA33448

CERTIFICATO ANALISI

Arsenico	μg/l	< 1	10
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016			
limite di quantificazione: 1		incertezza:	
Bario	μg/l	35	
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016	<u>н</u> уг	33	
limite di quantificazione: 1		incorto-zza I 2 E	
ilmite di quantincazione. T		incertezza: ± 3,5	
erillio	μg/l	< 0,3	4
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016			
limite di quantificazione: 0,3		incertezza:	
Soro	ug/l	197	1000
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016	μg/l	197	1000
limite di quantificazione: 1		incertezza: ± 20	
Cadmio	μg/l	< 0,3	5
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016			
limite di quantificazione: 0,3		incertezza:	
Calcio Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016	mg/l	111	
Weldoo of analist of mentilento. ONEEN ISO 1723-72.2010			
limite di quantificazione: 0,001		incertezza: ± 11	
Cobalto	μg/l	< 1	50
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016			
limite di quantificazione: 1		incertezza:	
			I
Cromo totale	μg/l	<1	50
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016			
limite di quantificazione: 1		incertezza:	
Cromo esavalente	μg/l	< 0,5	5
Metodo di analisi di riferimento: APAT CNR IRSA n° 3150 Man 29 2003	F97.	10,0	
limite di quantificazione: 0,5		incertezza:	
illilite di quantificazione. 0,5		incertezza.	
erro	μg/l	< 1	200
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016			
limite di quantificazione: 1		incertezza:	
lamasia		0.4	
Magnesio Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016	mg/l	81	
limite di quantificazione: 0,001		incertezza: ± 8	

Ordine dei CHIMICI e dei FISICI della Prov. di Treviso n° A093 Codice Fiscale GSTDRN42R12H823B P.IVA 01627660267 Via Pirzio Biroli n.1 - 31046 ODERZO (TV)

Triggiano, 23 ottobre 2020

Certificato n° 20LA33448

CERTIFICATO ANALISI

Manganese		μg/l	< 1		50
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016					
limite di qu	uantificazione: 1		incertezza:		
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016		µg/l	< 0,1		1
Metodo di ariansi di filerimento. Uni EN 150 17294-2.2016					
limite di qu	uantificazione: 0,1		incertezza:		
lolibdeno		μg/l	8,1		
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016		рул	0,1		
limite di qu	uantificazione: 1		incertezza: ± 0	1,8	
lichelio		μg/l	< 1		20
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016			-		
limite di qu	uantificazione: 1		incertezza:		
Piombo		μg/l	< 1		10
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016					
limito di a	iontificazione, 1		incortozza		
ilmite di qu	uantificazione: 1		incertezza:		
otassio		mg/l	19		
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016				-	
limite di ai	uantificazione: 0,001		incertezza: ± 2	<u> </u>	
Rame		μg/l	< 1		1000
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016					
limite di qu	uantificazione: 1		incertezza:		
elenio		μg/l	< 0,3		10
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016					
limite di qu	uantificazione: 0,3		incertezza:		
N. II.					
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016		mg/l	535		
Metodo di analisi di merimento. Givi Elviso 17294-2.2010					
limite di qu	uantificazione: 0,001		incertezza: ± 5	4	
tagno		ua/l	< 1		
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016		μg/l	<u> </u>		
limite di qu	uantificazione: 1		incertezza:		
'allio		μg/l	< 0,2		2
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016		µу/і	~ U,Z		
limite di qu	uantificazione: 0,2		incertezza:		

Ordine dei CHIMICI e dei FISICI della Prov. di Treviso n° A093 Codice Fiscale GSTDRN42R12H823B P.IVA 01627660267 Via Pirzio Biroli n.1 - 31046 ODERZO (TV)

Triggiano, 23 ottobre 2020

Certificato n° 20LA33448

CERTIFICATO ANALISI

Tellurio		μg/l	< 1	
Metodo di analisi di riferimento: UNI EN ISO 17294-	-2:2016			
	limite di quantificazione: 1		incertezza:	
/anadio			2.0	
Vanadio Metodo di analisi di riferimento: UNI EN ISO 17294-	.2:2016	μg/l	2,0	
Wetodo di difalisi di Merimento.	2.2010			
	limite di quantificazione: 1		incertezza: ± 0	,2
Zinco		μg/l	< 1	3000
Metodo di analisi di riferimento: UNI EN ISO 17294-	2:2016		1	L
	limite di quantificazione: 1		incertezza:	
	iiiiiii a qaaniiiioazione. T		illoortozzu.	
Benzene		μg/l	< 0,1	1
Metodo di analisi di riferimento: UNI EN ISO 15680:2	2005			
	limite di quantificazione: 0,1		incertezza:	
411.			امما	
Etilbenzene Metodo di analisi di riferimento: UNI EN ISO 15680:2	2005	μg/l	< 0,1	50
Metodo di arialisi di rilerimento. Uni EN ISO 15000.2	2005			
	limite di quantificazione: 0,1		incertezza:	
Stirene		μg/l	< 0,1	25
Metodo di analisi di riferimento: UNI EN ISO 15680:2	2005	10	-,-	
	P. W. P			
	limite di quantificazione: 0,1		incertezza:	
Toluene Toluene		μg/l	< 0,1	15
Metodo di analisi di riferimento: UNI EN ISO 15680:2	2005			•
	limite di quantificazione: 0,1		incertezza:	
				I
D-Xilene Metodo di analisi di riferimento: UNI EN ISO 15680:2	2005	μg/l	< 0,1	10
Metodo di analisi di riferimento: UNI EN 150 15080:2	2005			
	limite di quantificazione: 0,1		incertezza:	
Benzo(a)antracene		μg/l	< 0,01	0,1
Metodo di analisi di riferimento: EPA 8270E		P9 ⁽¹	٠ ٥,٥١	0,1
	limite di quantificazione: 0,01		incertezza:	
Benzo(a)pirene		μg/l	< 0,001	0,01
Metodo di analisi di riferimento: EPA 8270E				1
	limite di quantificazione: 0,001		incertezza:	
	,			ı
Benzo(b)fluorantene		μg/l	< 0,01	0,1
Metodo di analisi di riferimento: EPA 8270E				
	limite di quantificazione: 0,01		incertezza:	

Ordine dei CHIMICI e dei FISICI della Prov. di Treviso n° A093 Codice Fiscale GSTDRN42R12H823B P.IVA 01627660267 Via Pirzio Biroli n.1 - 31046 ODERZO (TV)

Triggiano, 23 ottobre 2020

Certificato n° 20LA33448

CERTIFICATO ANALISI

Benzo(k)fluorantene		μg/l	< 0,005	0,05
Metodo di analisi di riferimento: EPA 8270E				
limit	te di quantificazione: 0,005		incertezza:	
Benzo(g,h,i)perilene		μg/l	< 0,001	0,01
Metodo di analisi di riferimento: EPA 8270E				
limit	te di quantificazione: 0,001		incertezza:	
Crisene		μg/l	< 0,01	5
Metodo di analisi di riferimento: EPA 8270E		F9,.	10,01	
limit	te di quantificazione: 0,01		incertezza:	
Dibenzo(a,h)antracene		μg/l	< 0,001	0,01
Metodo di analisi di riferimento: EPA 8270E				ļ
limit	te di quantificazione: 0,001		incertezza:	
Indeno(1,2,3-c,d)pirene		μg/l	< 0,01	0,1
Metodo di analisi di riferimento: EPA 8270E				
limit	te di quantificazione: 0,01		incertezza:	
Pirene		ua/l	< 0.04	50
Metodo di analisi di riferimento: EPA 8270E		μg/l	< 0,01	50
limit	te di quantificazione: 0,01		incertezza:	
Sommatoria IPA (punto 38, tabella 2, allegato	5, titolo V d. Lgs 152/2006)	μg/l	< 0,01	0,1
Metodo di analisi di riferimento: EPA 8270E	,		,	<u> </u>
limit	te di quantificazione: 0,01		incertezza:	
""""	to a quantineazione. 0,01		incortezza.	
Clorometano		μg/l	< 0,1	1,5
Metodo di analisi di riferimento: UNI EN ISO 15680:2005				
limit	te di quantificazione: 0,1		incertezza:	
Cloroformio (triclorometano)		μg/l	< 0,01	0,15
Metodo di analisi di riferimento: UNI EN ISO 15680:2005				
limit	te di quantificazione: 0,01		incertezza:	
Olement distrib				
Cloruro di vinile Metodo di analisi di riferimento: UNI EN ISO 15680:2005		μg/l	< 0,05	0,5
microdo di analisi di meninetilo. UNI EN 130 13060.2005				
limit	te di quantificazione: 0,05		incertezza:	
1,2 - Dicloroetano		μg/l	< 0,1	3
Metodo di analisi di riferimento: UNI EN ISO 15680:2005		ra''	- 0,1	
limit	te di quantificazione: 0,1		incertezza:	

Ordine dei CHIMICI e dei FISICI della Prov. di Treviso n° A093 Codice Fiscale GSTDRN42R12H823B P.IVA 01627660267 Via Pirzio Biroli n.1 - 31046 ODERZO (TV)

Triggiano, 23 ottobre 2020

Certificato n° 20LA33448

CERTIFICATO ANALISI

1,1 - Dicloroetilene		μg/l	< 0,005	0,05
Metodo di analisi di riferimento: UNI EN ISO 15680:2005				<u> </u>
limite o	di quantificazione: 0,005		incertezza:	
ricloroetilene		μg/l	< 0,1	1,5
Metodo di analisi di riferimento: UNI EN ISO 15680:2005			10,1	1,0
limite o	di quantificazione: 0,1		incertezza:	
etracloroetilene		μg/l	< 0,1	1,1
Metodo di analisi di riferimento: UNI EN ISO 15680:2005			-,-	,
limite o	di quantificazione: 0,1		incertezza:	
saclorobutadiene (HCBD)		μg/l	< 0,01	0,15
Metodo di analisi di riferimento: UNI EN ISO 15680:2005			L	L
limite o	di quantificazione: 0,01		incertezza:	
ommatoria organoalogenati (punto 47, tabell	la 2, allegato 5, titolo V d. Lgs	μg/l	< 1	10
Metodo di analisi di riferimento: UNI EN ISO 15680:2005				
limite o	di quantificazione: 1		incertezza:	
,1 - Dicloroetano		μg/l	< 0,1	810
Metodo di analisi di riferimento: UNI EN ISO 15680:2005				L
limite o	di quantificazione: 0,1		incertezza:	
,2 - Dicloroetilene		μg/l	< 0,1	60
Metodo di analisi di riferimento: UNI EN ISO 15680:2005				
limite o	di quantificazione: 0,1		incertezza:	
2 - Dicloropropano		μg/l	< 0,01	0,15
Metodo di analisi di riferimento: UNI EN ISO 15680:2005			1	,
limite o	di quantificazione: 0,01		incertezza:	
,1,2 - Tricloroetano		μg/l	< 0,01	0,2
Metodo di analisi di riferimento: UNI EN ISO 15680:2005			<u>'</u>	•
limite o	di quantificazione: 0,01		incertezza:	
,2,3 - Tricloropropano		μg/l	< 0,001	0,001
Metodo di analisi di riferimento: UNI EN ISO 15680:2005				
limite o	di quantificazione: 0,001		incertezza:	
1,2,2 - Tetracloroetano		μg/l	< 0,005	0,05
Metodo di analisi di riferimento: UNI EN ISO 15680:2005			1	I
limite o	di quantificazione: 0,005		incertezza:	

Ordine dei CHIMICI e dei FISICI della Prov. di Treviso n° A093 Codice Fiscale GSTDRN42R12H823B P.IVA 01627660267 Via Pirzio Biroli n.1 - 31046 ODERZO (TV)

Triggiano, 23 ottobre 2020

Certificato n° 20LA33448

CERTIFICATO ANALISI

Tribromomotono		< 0.04	
Fribromometano Metodo di analisi di riferimento: UNI EN ISO 15680:2005	µg/I	< 0,01	0,3
limite di quantificazione: 0,01		incertezza:	
1,2 - Dibromoetano	μg/l	< 0,001	0,001
Metodo di analisi di riferimento: UNI EN ISO 15680:2005		5,555	
limite di quantificazione: 0,001		incertezza:	
ilmite di quantificazione. 0,001		incertezza.	
Dibromoclorometano	μg/l	< 0,01	0,13
Metodo di analisi di riferimento: UNI EN ISO 15680:2005			
limite di quantificazione: 0,01		incertezza:	
		ı	
Bromodiclorometano	μg/l	< 0,01	0,17
Metodo di analisi di riferimento: UNI EN ISO 15680:2005			
limite di quantificazione: 0,01		incertezza:	
Nitrobenzene		< 0.2	2.5
Metodo di analisi di riferimento: EPA 8260 rev 3 2006	µg/I	< 0,3	3,5
limite di quantificazione: 0,3		incertezza:	
,2 - Dinitrobenzene	μg/l	< 0,3	15
Metodo di analisi di riferimento: EPA 8260 rev 3 2006		· I	I
limite di quantificazione: 0,3		incertezza:	
,3- dinitrobenzene	μg/l	< 0,3	3,7
Metodo di analisi di riferimento: EPA 8260 rev 3 2006			
limite di quantificazione: 0,3		incertezza:	
Cloronitrobenzeni (ognumo)	 μg/l	< 0,05	0,5
Metodo di analisi di riferimento: EPA 8260 rev 3 2006	μ9/1	< 0,03	0,3
limite di quantificazione: 0,05		incertezza:	
Monoclorobenzene	μg/l	< 0,1	40
Metodo di analisi di riferimento: UNI EN ISO 15680:2005			
limite di quantificazione: 0,1		incertezza:	
2 dialarahanyana	="	< 0.4	070
,2 - diclorobenzene Metodo di analisi di riferimento: UNI EN ISO 15680:2005	µg/I	< 0,1	270
limite di quantificazione: 0,1		incertezza:	
,4 - diclorobenzene	μg/l	< 0,05	0,5
Metodo di analisi di riferimento: UNI EN ISO 15680:2005	10	-,-•	
limite di quantificazione: 0,05		incertezza:	

Ordine dei CHIMICI e dei FISICI della Prov. di Treviso n° A093 Codice Fiscale GSTDRN42R12H823B P.IVA 01627660267 Via Pirzio Biroli n.1 - 31046 ODERZO (TV)

Triggiano, 23 ottobre 2020

Certificato n° 20LA33448

CERTIFICATO ANALISI

,2,4 - Triclorobenzene		μg/l	< 0,1	190
Metodo di analisi di riferimento: UNI EN ISO 1568	0:2005		<u> </u>	•
	limite di quantificazione: 0,1		incertezza:	
		_		1
2,4,5 - Tetraclorobenzene Metodo di analisi di riferimento: EPA 8270E		μg/l	< 0,1	1,8
Metodo di analisi di Menmento. EPA 6270E				
	limite di quantificazione: 0,1		incertezza:	
entaclorobenzene		μg/l	< 0,5	5
Metodo di analisi di riferimento: EPA 8270E			'	'
	limite di quantificazione: 0,5		incertezza:	
saclorobenzene (HCB)		μg/l	< 0,001	0,01
Metodo di analisi di riferimento: EPA 8270E				
	limite di quantificazione: 0,001		incertezza:	
- clorofenolo		μg/l	< 1	180
Metodo di analisi di riferimento: EPA 8270E		F97.	* 1	
	limite di quantificazione: 1		incertezza:	
4 - Diclorofenolo		μg/l	< 1	110
Metodo di analisi di riferimento: EPA 8270E				
	limite di quantificazione: 1		incertezza:	
4,6 - Triclorofenolo		μg/l	< 0,5	5
Metodo di analisi di riferimento: EPA 8270E				
	limite di quantificazione: 0,5		incertezza:	
entaclorofenolo		μg/l	< 0,05	0,5
Metodo di analisi di riferimento: EPA 8270E		13	3,00	.,.
	limite di quantificazione: 0,05		incertezza:	
laclor		μg/l	< 0,01	0,1
Metodo di analisi di riferimento: EPA 8270E			- 0,01	
	limite di quantificazione: 0,01		incertezza:	
ldrin		μg/l	< 0,003	0,03
Metodo di analisi di riferimento: EPA 8270E		L9.,	,	1 2,00
	limite di quantificazione: 0,003		incertezza:	
function a			10.04	
trazina Metodo di analisi di riferimento: EPA 8270E		µg/l	< 0,01	0,3
stodd di didaidi di incinicino. Li A 0210E				
	limite di quantificazione: 0,01		incertezza:	

Ordine dei CHIMICI e dei FISICI della Prov. di Treviso n° A093 Codice Fiscale GSTDRN42R12H823B P.IVA 01627660267 Via Pirzio Biroli n.1 - 31046 ODERZO (TV)

Triggiano, 23 ottobre 2020

Certificato n° 20LA33448

CERTIFICATO ANALISI

			T
Alfa-esacioroesano	μg/l	< 0,01	0,1
Metodo di analisi di riferimento: EPA 8270E			
limite di quantificazione: 0,01		incertezza:	
Beta-esacloroesano		1004	0.4
Metodo di analisi di riferimento: EPA 8270E	μg/l	< 0,01	0,1
, , , , , , , , , , , , , , , , , , ,			
limite di quantificazione: 0,01		incertezza:	
Gamma-esacloroesano (lindano)	μg/l	< 0,01	0,1
Metodo di analisi di riferimento: EPA 8270E		,	
limite di quantificazione: 0,01		incertezza:	
Clordano	ug/l	< 0,01	0,1
Metodo di analisi di riferimento: EPA 8270E	μg/l	~ 0,0 I	0,1
limite di quantificazione: 0,01		incertezza:	
DDD, DDT, DDE	μg/l	< 0,01	0,1
Metodo di analisi di riferimento: EPA 8270E			
limite di quantificazione: 0,01		incertezza:	
Dieldrin	μg/l	< 0,003	0,03
Metodo di analisi di riferimento: EPA 8270E			
limite di quantificazione: 0,003		incertezza:	
Endrin	μg/l	< 0,01	0,1
Metodo di analisi di riferimento: EPA 8270E	P9,.	30,01	<u> </u>
limite di quantificazione: 0,01		incertezza:	
Sommatoria fitofarmaci (punto 86, tabella 2, allegato 5, titolo V d. Lgs	μg/l	< 0,05	0,5
152/2006) Metodo di analisi di riferimento: EPA 8270E		,	
limite di quantificazione: 0,05		incertezza:	
Clorpirifos	μg/l	< 0,1	
Metodo di analisi di riferimento: EPA 8270E			
limite di quantificazione: 0,1		incertezza:	
Dimetoato FDA 00325	μg/l	< 0,1	
Metodo di analisi di riferimento: EPA 8270E			
limite di quantificazione: 0,1		incertezza:	
Deltametrina	μg/l	< 0,1	
Metodo di analisi di riferimento: EPA 8270E	µу/і	~ 0, 1	
limite di quantificazione: 0,1		incertezza:	

Ordine dei CHIMICI e dei FISICI della Prov. di Treviso n° A093 Codice Fiscale GSTDRN42R12H823B P.IVA 01627660267 Via Pirzio Biroli n.1 - 31046 ODERZO (TV)

Triggiano, 23 ottobre 2020

Certificato nº 20LA33448

CERTIFICATO ANALISI

(valido a tutti gli effetti come da D. L. n° 842/28)

Fention		μg/l	< 0,1	
Metodo di analisi di riferimento: EPA 8270E				
	limite di quantificazione: 0,1		incertezza:	
Oxifluorfen		μg/l	< 0,1	
Metodo di analisi di riferimento: EPA 8270E				!
	limite di quantificazione: 0,1		incertezza:	
Paration		μg/l	< 0,1	
Metodo di analisi di riferimento: EPA 8270E			-	·
	limite di quantificazione: 0,1		incertezza:	
Simazina		μg/l	< 0,1	
Metodo di analisi di riferimento: EPA 8270E			·	•
	limite di quantificazione: 0,1		incertezza:	
Sommatoria pesticidi fosforati		μg/l	< 0,1	
Metodo di analisi di riferimento: EPA 8270E			<u>'</u>	
	limite di quantificazione: 0,1		incertezza:	
PCB		μg/l	< 0,001	0,01
Metodo di analisi di riferimento: APAT CNR IRSA	5110 Man 29 2003			
	limite di quantificazione: 0,001		incertezza:	

Note:

La determinazione dei metalli è stata effettuata sul campione filtrato e acidificato. Nel calcolo della concentrazione degli elementi in traccia non viene considerato il recupero determinato dal laboratorio il quale risulta essere compreso tra 90 e 110 %.

L'incertezza di misura riportata nel presente certificato di analisi è espressa come incertezza estesa con un fattore di copertura (k) pari a 2 corrispondente a un livello di fiducia di circa 95%.

I risultati delle analisi si riferiscono ESCLUSIVAMENTE al campione esaminato; si declina ogni responsabilità nei casi di utilizzo del presente atto in difformità agli usi consentiti dalla Legge. Le analisi da eseguire sono state commissionate dal committente e dunque si declina ogni responsabilità in merito alla completezza delle informazioni.

Le analisi sono state eseguite dalla CHIMIE Srl e i LABORATORI ANALISI CHIMICHE DOTT. ADRIANO GIUSTO - SERVIZI AMBIENTE S.R.L., accreditato al n. 0128L, del gruppo LIFEANALYTICS.

Il chimico

Laboratorio Analisi Chimiche Dott. A. Giusto Servizi Ambiente S.r.I. - Chimie S.r.I. Gruppo LIFEANALYTICS

Tel. 0804621899 – info.chimie@lifeanalytics.it Laboratori Conformi alla norma UNI CEI EN ISO/IEC 17025:2018 Laboratori Certificati UNI EN ISO 9001:2015 e UNI EN ISO 14001:2015

Ordine dei CHIMICI e dei FISICI della Prov. di Treviso n° A093 Codice Fiscale GSTDRN42R12H823B P.IVA 01627660267 Via Pirzio Biroli n.1 - 31046 ODERZO (TV)

Triggiano, 23 ottobre 2020

Certificato n° 20LA33910

CERTIFICATO ANALISI

(valido a tutti gli effetti come da D. L. n° 842/28)

COMMITTENTE: FORMICA AMBIENTE srl - Via Groenlandia 47 - Roma

ETICHETTA: Campione di acqua di falda prelevato dal pozzo n° 4 della discarica per rifiuti non pericolosi sita in c.da Formica (BR)

Data ricezione campione: 24/09/20 Profondità della falda: 43,7 m

Il campione è stato prelevato dal tecnico dello studio CHIMIE Srl, P. Chim. G. Cipriano come da verbale nº 74/09

RISULTATI

PARAMETRO	unità di misura	valore determinato	D. Lgs. 152/06 Tab. 2 allegato 5 alla parte IV Titolo V
рН		7,08	
Metodo di analisi di riferimento: UNI EN ISO 10523:2012		'	<u>'</u>
limite di quantificazione: > 1 e < 13		incertezza: ±	0,12
Temperatura	°C	20,0	
Metodo di analisi di riferimento: APAT CNR IRSA 2100 Man 29 2003			•
limite di quantificazione: 1		incertezza: ±	0,2
Ossigeno disciolto	mg/l	5,12	
Metodo di analisi di riferimento: Strumentale - Sensore di Ossigeno Disciolto a luminescenza LDO			•
limite di quantificazione: 0,5		incertezza: ±	0,51
Potenziale Redox	mV	105,7	
Metodo di analisi di riferimento: Strumentale - Sensore ORP			·
limite di quantificazione: 10		incertezza: ±	10,6
Conducibilità	uS/cm a 20 °C	2800	
Metodo di analisi di riferimento: UNI EN 27888:1995			·
limite di quantificazione: 10		incertezza: ±	56
Ossidabilità O2	mg/l	1,00	
Metodo di analisi di riferimento: metodo Tritrimetrico (secondo Kubel), ISTISAN 07/31		•	
limite di quantificazione: 0,5		incertezza: ±	0,08
Domanda biochimica di ossigeno (BOD5) a 20°C senza nitrificazione	mgO ₂ /I	< 0,5	
Metodo di analisi di riferimento: APAT CNR IRSA 5120 Man 29 2003			1
limite di quantificazione: 0,5		incertezza:	
Carbonio organico totale (TOC)	mg/l	0,4	
Metodo di analisi di riferimento: APAT CNR IRSA 5040 Man 29 2003		'	•
limite di quantificazione: 0,1		incertezza: ±	0,1

Ordine dei CHIMICI e dei FISICI della Prov. di Treviso n° A093 Codice Fiscale GSTDRN42R12H823B P.IVA 01627660267 Via Pirzio Biroli n.1 - 31046 ODERZO (TV)

Triggiano, 23 ottobre 2020

Certificato n° 20LA33910

CERTIFICATO ANALISI

Durezza totale	°F	51	
Metodo di analisi di riferimento: APAT CNR IRSA 2040 A Man 29 2003			· '
limite di quantificazione: 5		incertezza: ±	1
ianuri	μg/l	<1	50
Metodo di analisi di riferimento: APAT CNR IRSA 4070 Man 29 2003			
limite di quantificazione: 1		incertezza:	
uoruri	mg/l	0,12	1,5
Metodo di analisi di riferimento: UNI EN ISO 10304-1:2009			<u> </u>
F 1 F 10 C 1			
limite di quantificazione: 0,1		incertezza:	
itriti come NO2	μg/l	< 50	500
Metodo di analisi di riferimento: UNI EN ISO 10304-1:2009			<u>'</u>
limite di quantificazione: 50		incertezza:	
			ı
olfati	mg/l	102	250
Metodo di analisi di riferimento: UNI EN ISO 10304-1:2009			
limite di quantificazione: 0,1		incertezza: ±	10
loruri	mg/l	692	
Metodo di analisi di riferimento: UNI EN ISO 10304-1:2009			
limite di guantificazione e 0.4		incorto-zza. I	60.2
limite di quantificazione: 0,1		incertezza: ±	09,2
itrati come NO3	mg/l	31	
Metodo di analisi di riferimento: UNI EN ISO 10304-1:2009			,
limite di quantificazione: 0,1		incertezza: ±	3
mmoniaca come NH4 Metodo di analisi di riferimento: UNICHIM 2363:2009	mg/l	< 0,05	
welddd di anaisi di meinneirib. Offici mw 2505.2009			
limite di quantificazione: 0,05		incertezza:	
lluminio	μg/l	1,1	200
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016	.,	-,-	l l
limite di quantificazione: 1		incertezza:	
		50110224.	
ntimonio	μg/l	1,1	5
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016			
limite di quantificazione: 0,3		incertezza: ±	0,11
		_	
rgento Metodo di appliai di riforimanto: LINI EN ISO 17904 2:2016	μg/l	<1	10
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016			
limite di quantificazione: 1		incertezza:	

Ordine dei CHIMICI e dei FISICI della Prov. di Treviso n° A093 Codice Fiscale GSTDRN42R12H823B P.IVA 01627660267 Via Pirzio Biroli n.1 - 31046 ODERZO (TV)

Triggiano, 23 ottobre 2020

Certificato n° 20LA33910

CERTIFICATO ANALISI

Arsenico	μg/l	< 1	10
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016			
limite di quantificazione: 1		incertezza:	
Bario	μg/l	27	
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016	P9/1	21	
limite di quantificazione: 1		·	
iiffile ui quantincazione. T		incertezza: ± 3	
Berillio	μg/l	< 0,3	4
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016			
limite di quantificazione: 0,3		incertezza:	
Boro	ua/l	148	1000
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016	µg/l	140	1000
			_
limite di quantificazione: 1		incertezza: ± 1	5
Cadmio	μg/l	< 0,3	5
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016			<u>'</u>
limite di quantificazione: 0,3		incertezza:	
N			
Calcio Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016	mg/l	109	
Wetodo di analisi di merimento. Otti Eli 130 17254-2.2010			
limite di quantificazione: 0,001		incertezza: ± 1	1
Cobalto	μg/l	<1	50
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016			
limite di quantificazione: 1		incertezza:	
			I
Cromo totale	μg/l	<1	50
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016			
limite di quantificazione: 1		incertezza:	
Cromo esavalente	μg/l	< 0,5	5
Metodo di analisi di riferimento: APAT CNR IRSA n° 3150 Man 29 2003		5,5	
limite di quantificazione: 0,5		incertezza:	
		oortozza.	
Ferro	μg/l	14	200
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016			
limite di quantificazione: 1		incertezza: ± 1	,4
/lagnesio	ma/l	57	
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016	mg/l	5/	
limite di quantificazione: 0,001		incertezza: ± 6	5

Ordine dei CHIMICI e dei FISICI della Prov. di Treviso n° A093 Codice Fiscale GSTDRN42R12H823B P.IVA 01627660267 Via Pirzio Biroli n.1 - 31046 ODERZO (TV)

Triggiano, 23 ottobre 2020

Certificato n° 20LA33910

CERTIFICATO ANALISI

Manganese	μg/l	< 1	50
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016			
limite di quantificazio	ne: 1	incertezza:	
			I
lercurio	µg/I	< 0,1	1
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016			
limite di quantificazio	ne: 0,1	incertezza:	
lolibdeno	μg/l	2,4	
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016	F3.	- ,-	
limite di quantificazio	ne: 1	incertezza: ±	0,2
lichelio	µg/l	<1	20
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016			
limite di quantificazio	ne: 1	incertezza:	
Piombo	μg/l	< 1	10
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016			
limite di quantificazio	ne: 1	incertezza:	
Potassio		20	
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016	mg/l	20	
limite di quantificazio	ne: 0,001	incertezza: ±	2
Rame	μg/l	< 1	1000
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016		-	· ·
limite di quantificazio	ne: 1	incertezza:	
Selenio	µg/I	< 0,3	10
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016			
limite di quantificazio	ne: 0,3	incertezza:	
odio	mg/l	337	
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016	g/.	337	
limite di quantificazio	ne: 0,001	incertezza: ±	34
itagno	μg/l	< 1	
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016			l l
limite di quantificazio	ne: 1	incertezza:	
			_
allio	μg/l	< 0,2	2
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016			
limite di quantificazio	ne: 0.2	incertezza:	

Ordine dei CHIMICI e dei FISICI della Prov. di Treviso n° A093 Codice Fiscale GSTDRN42R12H823B P.IVA 01627660267 Via Pirzio Biroli n.1 - 31046 ODERZO (TV)

Triggiano, 23 ottobre 2020

Certificato n° 20LA33910

CERTIFICATO ANALISI

			1	1
Tellurio Tellurio		μg/l	< 1	
Metodo di analisi di riferimento: UNI EN ISO 1729	4-2:2016			
	limite di quantificazione: 1		incertezza:	
/anadio Metodo di analisi di riferimento: UNI EN ISO 1729	M 2:2016	μg/l	2,9	
Weloud di analisi di filefililerilo. ONI EN 130 1725	4-2.2010			
	limite di quantificazione: 1		incertezza: ± 0,3	
Zinco		μg/l	4,7	3000
Metodo di analisi di riferimento: UNI EN ISO 1729	4-2:2016	13	-,-	
	P. 11. P. 116. 1			
	limite di quantificazione: 1		incertezza: ± 0,5	
Benzene		μg/l	< 0,1	1
Metodo di analisi di riferimento: UNI EN ISO 1568	0:2005		· · · · · · · · · · · · · · · · · · ·	1
	limite di quantificazione: 0,1		incertezza:	
			1	1
Etilbenzene		μg/l	< 0,1	50
Metodo di analisi di riferimento: UNI EN ISO 1568	0:2005			
	limite di quantificazione: 0,1		incertezza:	
Stirene			- 0.4	
Metodo di analisi di riferimento: UNI EN ISO 1568	0:2005	μg/l	< 0,1	25
	limite di quantificazione: 0,1		incertezza:	
Toluene		μg/l	< 0,1	15
Metodo di analisi di riferimento: UNI EN ISO 1568	0:2005		•	I
	limite di quantificazione: 0,1		incertezza:	
	innite di quantincazione. U, i		incertezza.	
p-Xilene		μg/l	< 0,1	10
Metodo di analisi di riferimento: UNI EN ISO 1568	0:2005		•	•
	limite di quantificazione: 0,1		incertezza:	
Benzo(a)antracene		µg/I	< 0,01	0,1
Metodo di analisi di riferimento: EPA 8270E				
	limite di quantificazione: 0,01		incertezza:	
Benzo(a)pirene		μg/l	< 0,001	0,01
Metodo di analisi di riferimento: EPA 8270E		μg/I	~ 0,00 i	0,01
	limite di quantificazione: 0,001		incertezza:	
Benzo(b)fluorantene		μg/l	< 0,01	0,1
Metodo di analisi di riferimento: EPA 8270E			-,	
	P 11 P 12 P 201			
	limite di quantificazione: 0,01		incertezza:	

Ordine dei CHIMICI e dei FISICI della Prov. di Treviso n° A093 Codice Fiscale GSTDRN42R12H823B P.IVA 01627660267 Via Pirzio Biroli n.1 - 31046 ODERZO (TV)

Triggiano, 23 ottobre 2020

Certificato n° 20LA33910

CERTIFICATO ANALISI

Benzo(k)fluorantene		μg/l	< 0,005	0,05
Metodo di analisi di riferimento: EPA 8270E				
limit	te di quantificazione: 0,005		incertezza:	
Benzo(g,h,i)perilene		μg/l	< 0,001	0,01
Metodo di analisi di riferimento: EPA 8270E				
limit	te di quantificazione: 0,001		incertezza:	
Crisene		μg/l	< 0,01	5
Metodo di analisi di riferimento: EPA 8270E		F9,.	10,01	
limit	te di quantificazione: 0,01		incertezza:	
Dibenzo(a,h)antracene		μg/l	< 0,001	0,01
Metodo di analisi di riferimento: EPA 8270E				ļ
limit	te di quantificazione: 0,001		incertezza:	
Indeno(1,2,3-c,d)pirene		μg/l	< 0,01	0,1
Metodo di analisi di riferimento: EPA 8270E				
limit	te di quantificazione: 0,01		incertezza:	
Pirene		ua/l	< 0.04	50
Metodo di analisi di riferimento: EPA 8270E		μg/l	< 0,01	50
limit	te di quantificazione: 0,01		incertezza:	
Sommatoria IPA (punto 38, tabella 2, allegato	5, titolo V d. Lgs 152/2006)	μg/l	< 0,01	0,1
Metodo di analisi di riferimento: EPA 8270E	,		,	<u> </u>
limit	te di quantificazione: 0,01		incertezza:	
""""	to a quantineazione. 0,01		incortezza.	
Clorometano		μg/l	< 0,1	1,5
Metodo di analisi di riferimento: UNI EN ISO 15680:2005				
limit	te di quantificazione: 0,1		incertezza:	
Cloroformio (triclorometano)		μg/l	< 0,01	0,15
Metodo di analisi di riferimento: UNI EN ISO 15680:2005				
limit	te di quantificazione: 0,01		incertezza:	
Olement distrib				
Cloruro di vinile Metodo di analisi di riferimento: UNI EN ISO 15680:2005		μg/l	< 0,05	0,5
microdo di analisi di meninetilo. UNI EN 130 13060.2005				
limit	te di quantificazione: 0,05		incertezza:	
1,2 - Dicloroetano		μg/l	< 0,1	3
Metodo di analisi di riferimento: UNI EN ISO 15680:2005		ra''	- 0,1	
limit	te di quantificazione: 0,1		incertezza:	

Ordine dei CHIMICI e dei FISICI della Prov. di Treviso n° A093 Codice Fiscale GSTDRN42R12H823B P.IVA 01627660267 Via Pirzio Biroli n.1 - 31046 ODERZO (TV)

Triggiano, 23 ottobre 2020

Certificato n° 20LA33910

CERTIFICATO ANALISI

,1 - Dicloroetilene	μg/l	0,046	0,05
Metodo di analisi di riferimento: UNI EN ISO 15680:2005			
limite di quantificazione: 0,005		incertezza: ± 0,007	
ricloroetilene	μg/l	< 0,1	1,5
Metodo di analisi di riferimento: UNI EN ISO 15680:2005			
limite di quantificazione: 0,1		incertezza:	
etracloroetilene	μg/l	< 0,1	1,1
Metodo di analisi di riferimento: UNI EN ISO 15680:2005		,	
limite di quantificazione: 0,1		incertezza:	
saclorobutadiene (HCBD)	μg/l	< 0,01	0,15
Metodo di analisi di riferimento: UNI EN ISO 15680:2005			
limite di quantificazione: 0,01		incertezza:	
ommatoria organoalogenati (punto 47, tabella 2, allegato 5, titolo V d. Lgs	1.~/I	< 1	10
52/2006) Metodo di analisi di riferimento: UNI EN ISO 15680:2005	μg/l		10
limite di quantificazione: 1		incertezza:	
,1 - Dicloroetano	μg/l	< 0,1	810
Metodo di analisi di riferimento: UNI EN ISO 15680:2005			
limite di quantificazione: 0,1		incertezza:	
,2 - Dicloroetilene	μg/l	< 0,1	60
Metodo di analisi di riferimento: UNI EN ISO 15680:2005		'	
limite di quantificazione: 0,1		incertezza:	
2 - Dicloropropano	μg/l	< 0,01	0,15
Metodo di analisi di riferimento: UNI EN ISO 15680:2005		,	
limite di quantificazione: 0,01		incertezza:	
1,2 - Tricloroetano	μg/l	< 0,01	0,2
Metodo di analisi di riferimento: UNI EN ISO 15680:2005		-	
limite di quantificazione: 0,01		incertezza:	
2,3 - Tricloropropano	μg/l	< 0,001	0,001
Metodo di analisi di riferimento: UNI EN ISO 15680:2005		<u>'</u>	'
limite di quantificazione: 0,001		incertezza:	
1,2,2 - Tetracloroetano	μg/l	< 0,005	0,05
Metodo di analisi di riferimento: UNI EN ISO 15680:2005		-7	
limite di quantificazione: 0,005		incertezza:	

Ordine dei CHIMICI e dei FISICI della Prov. di Treviso n° A093 Codice Fiscale GSTDRN42R12H823B P.IVA 01627660267 Via Pirzio Biroli n.1 - 31046 ODERZO (TV)

Triggiano, 23 ottobre 2020

Certificato n° 20LA33910

CERTIFICATO ANALISI

Tuibusussataus			< 0.04	
Fribromometano Metodo di analisi di riferimento: UNI EN ISO 15680:2005		μg/l	< 0,01	0,3
limit	e di quantificazione: 0,01		incertezza:	
,2 - Dibromoetano		μg/l	< 0,001	0,001
Metodo di analisi di riferimento: UNI EN ISO 15680:2005			5,551	
р. ч	I'			
limite	e di quantificazione: 0,001		incertezza:	
Dibromoclorometano		μg/l	< 0,01	0,13
Metodo di analisi di riferimento: UNI EN ISO 15680:2005				'
limit	e di quantificazione: 0,01		incertezza:	
una mandiala na manta ma			< 0.04	0.47
romodiclorometano Metodo di analisi di riferimento: UNI EN ISO 15680:2005		μg/l	< 0,01	0,17
ivietodo di arialisi di filerimento. Oni En 130 13000.2000				
limite	e di quantificazione: 0,01		incertezza:	
litrobenzene		μg/l	< 0,3	3,5
Metodo di analisi di riferimento: EPA 8260 rev 3 2006		1-3	3 0,0	
limite	e di quantificazione: 0,3		incertezza:	
,2 - Dinitrobenzene		μg/l	< 0,3	15
Metodo di analisi di riferimento: EPA 8260 rev 3 2006				<u> </u>
limit	e di quantificazione: 0,3		incertezza:	
				I
,3- dinitrobenzene		μg/l	< 0,3	3,7
Metodo di analisi di riferimento: EPA 8260 rev 3 2006				
limite	e di quantificazione: 0,3		incertezza:	
loronitrobenzeni (ognumo)		μg/l	< 0,05	0,5
Metodo di analisi di riferimento: EPA 8260 rev 3 2006		pg/i	~ 0,03	
limit	e di quantificazione: 0,05		incertezza:	
lonoclorobenzene		μg/l	< 0,1	40
Metodo di analisi di riferimento: UNI EN ISO 15680:2005			•	
limite	e di quantificazione: 0,1		incertezza:	
2 dialarahanana				
,2 - diclorobenzene Metodo di analisi di riferimento: UNI EN ISO 15680:2005		μg/l	< 0,1	270
Microso di Girano, di filigili figlico. Orgi EN 150 15000.2005				
limite	e di quantificazione: 0,1		incertezza:	
,4 - diclorobenzene		μg/l	< 0,05	0,5
Metodo di analisi di riferimento: UNI EN ISO 15680:2005		רשיי	- 0,00	
limite	e di quantificazione: 0,05		incertezza:	

Ordine dei CHIMICI e dei FISICI della Prov. di Treviso n° A093 Codice Fiscale GSTDRN42R12H823B P.IVA 01627660267 Via Pirzio Biroli n.1 - 31046 ODERZO (TV)

Triggiano, 23 ottobre 2020

Certificato n° 20LA33910

CERTIFICATO ANALISI

,2,4 - Triclorobenzene		μg/l	< 0,1	190
Metodo di analisi di riferimento: UNI EN ISO 1568	0:2005		<u> </u>	•
	limite di quantificazione: 0,1		incertezza:	
		_		1
2,4,5 - Tetraclorobenzene Metodo di analisi di riferimento: EPA 8270E		μg/l	< 0,1	1,8
Metodo di analisi di Menmento. EPA 6270E				
	limite di quantificazione: 0,1		incertezza:	
entaclorobenzene		μg/l	< 0,5	5
Metodo di analisi di riferimento: EPA 8270E			'	'
	limite di quantificazione: 0,5		incertezza:	
saclorobenzene (HCB)		μg/l	< 0,001	0,01
Metodo di analisi di riferimento: EPA 8270E				
	limite di quantificazione: 0,001		incertezza:	
- clorofenolo		μg/l	< 1	180
Metodo di analisi di riferimento: EPA 8270E		F97.	* 1	
	limite di quantificazione: 1		incertezza:	
4 - Diclorofenolo		μg/l	< 1	110
Metodo di analisi di riferimento: EPA 8270E				
	limite di quantificazione: 1		incertezza:	
4,6 - Triclorofenolo		μg/l	< 0,5	5
Metodo di analisi di riferimento: EPA 8270E				
	limite di quantificazione: 0,5		incertezza:	
entaclorofenolo		μg/l	< 0,05	0,5
Metodo di analisi di riferimento: EPA 8270E		13	3,00	.,.
	limite di quantificazione: 0,05		incertezza:	
laclor		μg/l	< 0,01	0,1
Metodo di analisi di riferimento: EPA 8270E			- 0,01	
	limite di quantificazione: 0,01		incertezza:	
ldrin		μg/l	< 0,003	0,03
Metodo di analisi di riferimento: EPA 8270E		L9.,	,	1 2,00
	limite di quantificazione: 0,003		incertezza:	
function a			10.04	
trazina Metodo di analisi di riferimento: EPA 8270E		µg/l	< 0,01	0,3
stodd di didaidi di incinicino. Li A 0210E				
	limite di quantificazione: 0,01		incertezza:	

Ordine dei CHIMICI e dei FISICI della Prov. di Treviso n° A093 Codice Fiscale GSTDRN42R12H823B P.IVA 01627660267 Via Pirzio Biroli n.1 - 31046 ODERZO (TV)

Triggiano, 23 ottobre 2020

Certificato n° 20LA33910

CERTIFICATO ANALISI

Alfa-esacloroesano		μg/l	< 0,01	0,1
Metodo di analisi di riferimento: EPA 8270E			•	
limite o	di quantificazione: 0,01		incertezza:	
Beta-esacloroesano Metodo di analisi di riferimento: EPA 8270E		μg/l	< 0,01	0,1
Metodo di analisi di filetimento. EPA 6270E				
limite o	di quantificazione: 0,01		incertezza:	
Gamma-esacloroesano (lindano)		μg/l	< 0,01	0,1
Metodo di analisi di riferimento: EPA 8270E		15	7 0,0 1	
limite «	di quantificazione: 0,01		incertezza:	
Clordano Metodo di analisi di riferimento: EPA 8270E		µg/l	< 0,01	0,1
MELOGO DI ANANSI DI MEMMEMBO. EPA 8270E				
limite o	di quantificazione: 0,01		incertezza:	
DDD, DDT, DDE		μg/l	< 0,01	0,1
Metodo di analisi di riferimento: EPA 8270E			٠,٠.	
lionite.	ti quantificazione: 0.01		incertezza:	
limite (di quantificazione: 0,01		micertezza.	
Dieldrin		μg/l	< 0,003	0,03
Metodo di analisi di riferimento: EPA 8270E				·
limite (di quantificazione: 0,003		incertezza:	
Endrin		μg/l	< 0,01	0,1
Metodo di analisi di riferimento: EPA 8270E		<u>р</u> ул	\ 0,01	0,1
limite o	di quantificazione: 0,01		incertezza:	
Sommatoria fitofarmaci (punto 86, tabella 2	2, allegato 5, titolo V d. Lgs	μg/l	< 0,05	0,5
152/2006) Metodo di analisi di riferimento: EPA 8270E			, ,,,,	
limite	di quantificazione: 0,05		incertezza:	
Clorpirifos		μg/l	< 0,1	
Metodo di analisi di riferimento: EPA 8270E			,	I
limite o	di quantificazione: 0,1		incertezza:	
Dimotosta			ا م م د	I
Dimetoato Metodo di analisi di riferimento: EPA 8270E		μg/l	< 0,1	
The second secon				
limite o	di quantificazione: 0,1		incertezza:	
Deltametrina		μg/l	< 0,1	
Metodo di analisi di riferimento: EPA 8270E			-,-	
1:1a	di quantificazione: 0.1		incortezza	
limite	di quantificazione: 0,1		incertezza:	

Ordine dei CHIMICI e dei FISICI della Prov. di Treviso n° A093 Codice Fiscale GSTDRN42R12H823B P.IVA 01627660267 Via Pirzio Biroli n.1 - 31046 ODERZO (TV)

Triggiano, 23 ottobre 2020

Certificato nº 20LA33910

CERTIFICATO ANALISI

(valido a tutti gli effetti come da D. L. n° 842/28)

Fention		μg/l	< 0,1	
Metodo di analisi di riferimento: EPA 8270E				
	limite di quantificazione: 0,1		incertezza:	
Oxifluorfen		μg/l	< 0,1	
Metodo di analisi di riferimento: EPA 8270E			·	·
	limite di quantificazione: 0,1		incertezza:	
Paration		μg/l	< 0,1	
Metodo di analisi di riferimento: EPA 8270E				
	limite di quantificazione: 0,1		incertezza:	
Simazina		μg/l	< 0,1	
Metodo di analisi di riferimento: EPA 8270E			·	•
	limite di quantificazione: 0,1		incertezza:	
Sommatoria pesticidi fosforati		μg/l	< 0,1	
Metodo di analisi di riferimento: EPA 8270E			•	
	limite di quantificazione: 0,1		incertezza:	
РСВ		μg/l	< 0,001	0,01
Metodo di analisi di riferimento: APAT CNR IRSA 51	10 Man 29 2003			
	limite di quantificazione: 0,001		incertezza:	

Note:

La determinazione dei metalli è stata effettuata sul campione filtrato e acidificato. Nel calcolo della concentrazione degli elementi in traccia non viene considerato il recupero determinato dal laboratorio il quale risulta essere compreso tra 90 e 110 %.

L'incertezza di misura riportata nel presente certificato di analisi è espressa come incertezza estesa con un fattore di copertura (k) pari a 2 corrispondente a un livello di fiducia di circa 95%.

I risultati delle analisi si riferiscono ESCLUSIVAMENTE al campione esaminato; si declina ogni responsabilità nei casi di utilizzo del presente atto in difformità agli usi consentiti dalla Legge. Le analisi da eseguire sono state commissionate dal committente e dunque si declina ogni responsabilità in merito alla completezza delle informazioni.

Le analisi sono state eseguite dalla CHIMIE Srl e i LABORATORI ANALISI CHIMICHE DOTT. ADRIANO GIUSTO - SERVIZI AMBIENTE S.R.L., accreditato al n. 0128L, del gruppo LIFEANALYTICS.

Il chimico

Laboratorio Analisi Chimiche Dott. A. Giusto Servizi Ambiente S.r.I. - Chimie S.r.I. Gruppo LIFEANALYTICS

Tel. 0804621899 – info.chimie@lifeanalytics.it Laboratori Conformi alla norma UNI CEI EN ISO/IEC 17025:2018 Laboratori Certificati UNI EN ISO 9001:2015 e UNI EN ISO 14001:2015

Ordine dei CHIMICI e dei FISICI della Prov. di Treviso n° A093 Codice Fiscale GSTDRN42R12H823B P.IVA 01627660267 Via Pirzio Biroli n.1 - 31046 ODERZO (TV)

Triggiano, 23 ottobre 2020

Certificato n° 20LA33911

CERTIFICATO ANALISI

(valido a tutti gli effetti come da D. L. n° 842/28)

COMMITTENTE: FORMICA AMBIENTE srl - Via Groenlandia 47 - Roma

ETICHETTA: Campione di acqua di falda prelevato dal pozzo n° **V1** della discarica per rifiuti non pericolosi sita in c.da Formica (BR)

Data ricezione campione: 24/09/20 Profondità della falda: 40,8 m

Il campione è stato prelevato dal tecnico dello studio CHIMIE Srl, P. Chim. G. Cipriano come da verbale nº 74/09

RISULTATI

PARAMETRO	unità di misura	valore determinato	D. Lgs. 152/06 Tab. 2 allegato 5 alla parte IV Titolo V
рН		7,03	
Metodo di analisi di riferimento: UNI EN ISO 10523:2012			•
limite di quantificazione: > 1 e < 13		incertezza: ±	0,12
Temperatura	°C	21,4	
Metodo di analisi di riferimento: APAT CNR IRSA 2100 Man 29 2003			·
limite di quantificazione: 1		incertezza: ±	0,2
Ossigeno disciolto	mg/l	4,40	
Metodo di analisi di riferimento: Strumentale - Sensore di Ossigeno Disciolto a luminescenza LDO			·
limite di quantificazione: 0,5		incertezza: ±	0,44
Potenziale Redox	mV	102,7	
Metodo di analisi di riferimento: Strumentale - Sensore ORP			
limite di quantificazione: 10		incertezza: ±	10,3
Conducibilità	uS/cm a 20 °C	3400	
Metodo di analisi di riferimento: UNI EN 27888:1995			•
limite di quantificazione: 10		incertezza: ±	68
Ossidabilità O2	mg/l	1,10	
Metodo di analisi di riferimento: metodo Tritrimetrico (secondo Kubel), ISTISAN 07/31			•
limite di quantificazione: 0,5		incertezza: ±	0,09
Domanda biochimica di ossigeno (BOD5) a 20°C senza nitrificazione	mgO ₂ /I	< 0,5	
Metodo di analisi di riferimento: APAT CNR IRSA 5120 Man 29 2003		*	1
limite di quantificazione: 0,5		incertezza:	
Carbonio organico totale (TOC)	mg/l	0,6	
Metodo di analisi di riferimento: APAT CNR IRSA 5040 Man 29 2003			· · · · · · · · · · · · · · · · · · ·
limite di quantificazione: 0,1		incertezza: ±	0,1

Ordine dei CHIMICI e dei FISICI della Prov. di Treviso n° A093 Codice Fiscale GSTDRN42R12H823B P.IVA 01627660267 Via Pirzio Biroli n.1 - 31046 ODERZO (TV)

Triggiano, 23 ottobre 2020

Certificato n° 20LA33911

CERTIFICATO ANALISI

Durezza totale	°F	67	
Metodo di analisi di riferimento: APAT CNR IRSA 2040 A Man 29 2003		, , , , , , , , , , , , , , , , , , ,	<u> </u>
limite di quantificazione: 5		incertezza: ± 1	
ianuri	μg/l	< 1	50
Metodo di analisi di riferimento: APAT CNR IRSA 4070 Man 29 2003			
limite di quantificazione: 1		incertezza:	
luoruri	mg/l	0,15	1,5
Metodo di analisi di riferimento: UNI EN ISO 10304-1:2009		0,10	.,0
limite di quantificazione: 0,1		incertezza:	
litriti come NO2	μg/l	< 50	500
Metodo di analisi di riferimento: UNI EN ISO 10304-1:2009		1	<u> </u>
limite di quantificazione: 50		incertezza:	
olfati	mg/l	132	250
Metodo di analisi di riferimento: UNI EN ISO 10304-1:2009			
limite di quantificazione: 0,1		incertezza: ± 13	
Cloruri	mg/l	935	
Metodo di analisi di riferimento: UNI EN ISO 10304-1:2009	mg/i	933	
limite di quantificazione: 0,1		incertezza: ± 93,5	
litrati come NO3	mg/l	21	
Metodo di analisi di riferimento: UNI EN ISO 10304-1:2009		,	
limite di quantificazione: 0,1		incertezza: ± 2	
		1	I
mmoniaca come NH4	mg/l	< 0,05	
Metodo di analisi di riferimento: UNICHIM 2363:2009			
limite di quantificazione: 0,05		incertezza:	
Illuminio	μg/l	4,2	200
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016	۳۶٬۰	4,2	
n n n n n n n			
limite di quantificazione: 1		incertezza: ± 0,4	
ntimonio	μg/l	< 0,3	5
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016			l
limite di quantificazione: 0,3		incertezza:	
		I	I
rgento	μg/l	< 1	10
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016			
limite di quantificazione: 1		incertezza:	

Ordine dei CHIMICI e dei FISICI della Prov. di Treviso n° A093 Codice Fiscale GSTDRN42R12H823B P.IVA 01627660267 Via Pirzio Biroli n.1 - 31046 ODERZO (TV)

Triggiano, 23 ottobre 2020

Certificato n° 20LA33911

CERTIFICATO ANALISI

		<u> </u>	
arsenico	μg/l	< 1	10
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016			
limite di quantificazione: 1		incertezza:	
Bario		20	
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016	μg/l	38	
limite di quantificazione: 1		incertezza: ± 4	
Berillio	μg/l	< 0,3	4
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016		<u> </u>	
limite di quantificazione: 0,3		incertezza:	
		ı	I
Boro	μg/l	176	1000
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016			
limite di quantificazione: 1		incertezza: ± 18	
Cadmio	μg/l	< 0,3	5
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016		, 0,0	
limite di quantificazione: 0,3		incertezza:	
Calcio	mg/l	152	
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016			·
limite di quantificazione: 0,001		incertezza: ± 15	
Cobalto	 μg/l	< 1	50
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016	13		
limite di quantificazione: 1		incertezza:	
ill little di quantincazione. I		incertezza.	
Cromo totale	μg/l	< 1	50
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016			
limite di quantificazione: 1		incertezza:	
harman ann an		.0.5	
Cromo esavalente Metodo di analisi di riferimento: APAT CNR IRSA n° 3150 Man 29 2003	μg/l	< 0,5	5
limite di quantificazione: 0,5		incertezza:	
erro	μg/l	52	200
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016		I	
limite di quantificazione: 1		incertezza: ± 5,2	
			T
Magnesio	mg/l	70	
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016			
limite di quantificazione: 0,001		incertezza: ± 7	

Ordine dei CHIMICI e dei FISICI della Prov. di Treviso nº A093 Codice Fiscale GSTDRN42R12H823B P.IVA 01627660267 Via Pirzio Biroli n.1 - 31046 ODERZO (TV)

Triggiano, 23 ottobre 2020

Certificato n° 20LA33911

CERTIFICATO ANALISI

Manganese	μg/l	2,3	50
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016		l	ļ.
limite di quantificazione: 1		incertezza: ± 0,2	
Mercurio	μg/l	< 0,1	1
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016			
limite di quantificazione: 0,1		incertezza:	
Molibdeno	μg/l	2,2	
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016	P9':	2,2	
limite di quantificazione: 1		incertezza: ± 0,2	
Nichelio	μg/l	3,2	20
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016		I	
limite di quantificazione: 1		incertezza: ± 0,3	
· · · · · · · · · · · · · · · · · · ·		·	
Piombo	μg/l	< 1	10
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016			
limite di quantificazione: 1		incertezza:	
Potassio	mg/l	20	
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016	9	20	
limite di quantificazione: 0,001		incertezza: ± 2	
ilinite di quantificazione. 0,001		incertezza. ± 2	
Rame	μg/l	1,1	1000
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016			
limite di quantificazione: 1		incertezza:	
N-1!-		100	1 40
Selenio Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016	μg/l	< 0,3	10
limite di quantificazione: 0,3		incertezza:	
Sodio	mg/l	416	
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016		I	I
limite di quantificazione: 0,001		incertezza: ± 42	
Stagno	μg/l	< 1	
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016			
limite di quantificazione: 1		incertezza:	
Fallia		< 0.0	
Tallio Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016	μg/l	< 0,2	2
Microso di diffulli di Indilindino.			
limite di quantificazione: 0,2		incertezza:	

Ordine dei CHIMICI e dei FISICI della Prov. di Treviso n° A093 Codice Fiscale GSTDRN42R12H823B P.IVA 01627660267 Via Pirzio Biroli n.1 - 31046 ODERZO (TV)

Triggiano, 23 ottobre 2020

Certificato n° 20LA33911

CERTIFICATO ANALISI

			Т	T
Tellurio		μg/l	< 1	
Metodo di analisi di riferimento: UNI EN ISO 17294	-2:2016			
	limite di quantificazione: 1		incertezza:	
			2.2	
Metodo di analisi di riferimento: UNI EN ISO 17294	-2·2016	μg/l	3,3	
inclode di analisi di filonimente.	-2.2010			
	limite di quantificazione: 1		incertezza: ± 0,3	
Zinco		μg/l	12	3000
Metodo di analisi di riferimento: UNI EN ISO 17294	-2:2016	13		
	limite di numatiCamiana d			
	limite di quantificazione: 1		incertezza: ± 1	
Benzene		µg/l	< 0,1	1
Metodo di analisi di riferimento: UNI EN ISO 15680:	2005			•
	limite di quantificazione: 0,1		incertezza:	
	·		1	
Etilbenzene		μg/l	< 0,1	50
Metodo di analisi di riferimento: UNI EN ISO 15680:	2005			
	limite di quantificazione: 0,1		incertezza:	
Stirene			104	05
Metodo di analisi di riferimento: UNI EN ISO 15680:	2005	μg/l	< 0,1	25
motodo di analici di monnonio. Otti Elvico 10000.				
	limite di quantificazione: 0,1		incertezza:	
Toluene		μg/l	< 0,1	15
Metodo di analisi di riferimento: UNI EN ISO 15680:	2005		2,1	
	limite di quantificazione. O 1		incertezza:	
	limite di quantificazione: 0,1		incertezza.	
p-Xilene		µg/l	< 0,1	10
Metodo di analisi di riferimento: UNI EN ISO 15680:	2005			•
	limite di quantificazione: 0,1		incertezza:	
Benzo(a)antracene		μg/l	< 0,01	0,1
Metodo di analisi di riferimento: EPA 8270E				
	limite di quantificazione: 0,01		incertezza:	
Panao(a)nirana			10.004	
Benzo(a)pirene Metodo di analisi di riferimento: EPA 8270E		μg/l	< 0,001	0,01
Motodo di analisi di monnono. El A 0210E				
	limite di quantificazione: 0,001		incertezza:	
Benzo(b)fluorantene		μg/l	< 0,01	0,1
Metodo di analisi di riferimento: EPA 8270E		P9/1	- 0,01	0,1
	limite di quantificazione: 0,01		incertezza:	

Ordine dei CHIMICI e dei FISICI della Prov. di Treviso n° A093 Codice Fiscale GSTDRN42R12H823B P.IVA 01627660267 Via Pirzio Biroli n.1 - 31046 ODERZO (TV)

Triggiano, 23 ottobre 2020

Certificato n° 20LA33911

CERTIFICATO ANALISI

Benzo(k)fluorantene		μg/l	< 0,005	0,05
Metodo di analisi di riferimento: EPA 8270E				I
limite di qu	antificazione: 0,005		incertezza:	
enzo(g,h,i)perilene		μg/l	< 0,001	0,01
Metodo di analisi di riferimento: EPA 8270E		ру/і	< 0,001	0,01
limite di qu	antificazione: 0,001		incertezza:	
risene		μg/l	< 0,01	5
Metodo di analisi di riferimento: EPA 8270E		рул	< 0,01	3
limite di au	uantificazione: 0,01		incertezza:	
milic di qu	antinoazione. 0,01		moortozza.	
Dibenzo(a,h)antracene		μg/l	< 0,001	0,01
Metodo di analisi di riferimento: EPA 8270E				
limite di qu	antificazione: 0,001		incertezza:	
ndeno(1,2,3-c,d)pirene		μg/l	< 0,01	0,1
Metodo di analisi di riferimento: EPA 8270E			5,5.1	
limite di qu	antificazione: 0,01		incertezza:	
Pirene		μg/l	< 0,01	50
Metodo di analisi di riferimento: EPA 8270E			'	!
limite di qu	nantificazione: 0,01		incertezza:	
ommatoria IPA (punto 38, tabella 2, allegato 5, ti	itolo V d. Lgs 152/2006)	μg/l	< 0,01	0,1
Metodo di analisi di riferimento: EPA 8270E				
limite di qu	antificazione: 0,01		incertezza:	
Clorometano			104	4.5
Metodo di analisi di riferimento: UNI EN ISO 15680:2005		μg/l	< 0,1	1,5
	15			
iimite ai qu	antificazione: 0,1		incertezza:	
cloroformio (triclorometano)		μg/l	< 0,01	0,15
Metodo di analisi di riferimento: UNI EN ISO 15680:2005				
limite di qu	antificazione: 0,01		incertezza:	
Cloruro di vinile		μg/l	< 0,05	0,5
Metodo di analisi di riferimento: UNI EN ISO 15680:2005			• • •	
limite di qu	nantificazione: 0,05		incertezza:	
,2 - Dicloroetano		uall	< 0,1	3
Metodo di analisi di riferimento: UNI EN ISO 15680:2005		μg/l	< 0,1	
	contifications, 0.1		incorto	
limite ai qu	antificazione: 0,1		incertezza:	

Ordine dei CHIMICI e dei FISICI della Prov. di Treviso n° A093 Codice Fiscale GSTDRN42R12H823B P.IVA 01627660267 Via Pirzio Biroli n.1 - 31046 ODERZO (TV)

Triggiano, 23 ottobre 2020

Certificato n° 20LA33911

CERTIFICATO ANALISI

I,1 - Dicloroetilene	μg/l	< 0,005	0,05
Metodo di analisi di riferimento: UNI EN ISO 15680:2005			
limite di quantificazione: 0,005		incertezza:	
ricloroetilene	μg/l	< 0,1	1,5
Metodo di analisi di riferimento: UNI EN ISO 15680:2005		, 0,1	1,7
limite di quantificazione: 0,1		incertezza:	
etracloroetilene	μg/l	0,11	1,1
Metodo di analisi di riferimento: UNI EN ISO 15680:2005	1-9	9,	,,,
limite di quantificazione: 0,1		incertezza: ± 0,02	
Saclorobutadiene (HCBD)	μg/l	< 0,01	0,15
Metodo di analisi di riferimento: UNI EN ISO 15680:2005		,	
limite di quantificazione: 0,01		incertezza:	
commatoria organoalogenati (punto 47, tabella 2, allegato 5, titolo V d. Lgs	/!	< 1	10
52/2006) Metodo di analisi di riferimento: UNI EN ISO 15680:2005	μg/l		10
limite di quantificazione: 1		incertezza:	
,1 - Dicloroetano	μg/l	< 0,1	810
Metodo di analisi di riferimento: UNI EN ISO 15680:2005			
limite di quantificazione: 0,1		incertezza:	
,2 - Dicloroetilene	μg/l	< 0,1	60
Metodo di analisi di riferimento: UNI EN ISO 15680:2005			
limite di quantificazione: 0,1		incertezza:	
,2 - Dicloropropano	μg/l	< 0,01	0,15
Metodo di analisi di riferimento: UNI EN ISO 15680:2005	10	1 0,0 1	
limite di quantificazione: 0,01		incertezza:	
,1,2 - Tricloroetano	μg/l	< 0,01	0,2
Metodo di analisi di riferimento: UNI EN ISO 15680:2005		,	I
limite di quantificazione: 0,01		incertezza:	
,2,3 - Tricloropropano	μg/l	< 0,001	0,001
Metodo di analisi di riferimento: UNI EN ISO 15680:2005		1	1
limite di quantificazione: 0,001		incertezza:	
,1,2,2 - Tetracloroetano	μg/l	< 0,005	0,05
Metodo di analisi di riferimento: UNI EN ISO 15680:2005	10	-,	1 .,
limite di quantificazione: 0,005		incertezza:	

Ordine dei CHIMICI e dei FISICI della Prov. di Treviso n° A093 Codice Fiscale GSTDRN42R12H823B P.IVA 01627660267 Via Pirzio Biroli n.1 - 31046 ODERZO (TV)

Triggiano, 23 ottobre 2020

Certificato n° 20LA33911

CERTIFICATO ANALISI

ribromometano	μg/l	< 0,01	0,3
Metodo di analisi di riferimento: UNI EN ISO 15680:2005			
limite di quantificazione: 0,01		incertezza:	
2 - Dibromoetano	μg/l	< 0,001	0,001
Metodo di analisi di riferimento: UNI EN ISO 15680:2005	ру/і	< 0,001	0,001
limite di quantificazione: 0,001		incertezza:	
ibromoclorometano	μg/l	< 0,01	0,13
Metodo di analisi di riferimento: UNI EN ISO 15680:2005		'	'
limite di quantificazione: 0,01		incertezza:	
romodiclorometano	μg/l	< 0,01	0,17
Metodo di analisi di riferimento: UNI EN ISO 15680:2005		3,5 -	<u> </u>
limite di quantificazione: 0,01		incertezza:	
mine a quantinoazione. 0,01		mocrtezza.	
litrobenzene	μg/l	< 0,3	3,5
Metodo di analisi di riferimento: EPA 8260 rev 3 2006			
limite di quantificazione: 0,3		incertezza:	
,2 - Dinitrobenzene	μg/l	< 0,3	15
Metodo di analisi di riferimento: EPA 8260 rev 3 2006		'	<u>'</u>
limite di quantificazione: 0,3		incertezza:	
,3- dinitrobenzene	μg/l	< 0,3	3,7
Metodo di analisi di riferimento: EPA 8260 rev 3 2006			
limite di quantificazione: 0,3		incertezza:	
Eloronitrobenzeni (ognumo) Metodo di analisi di riferimento: EPA 8260 rev 3 2006	μg/l	< 0,05	0,5
Metodo di analisi di Hierimenio. EPA 6200 lev 3 2006			
limite di quantificazione: 0,05		incertezza:	
lonoclorobenzene	μg/l	< 0,1	40
Metodo di analisi di riferimento: UNI EN ISO 15680:2005		'	'
limite di quantificazione: 0,1		incertezza:	
2 - diclorobenzene	μg/l	< 0,1	270
Metodo di analisi di riferimento: UNI EN ISO 15680:2005		- 7 -	
limite di quantificazione: 0,1		incertezza:	
		.0.5=	
,4 - diclorobenzene Metodo di analisi di riferimento: UNI EN ISO 15680:2005	μg/l	< 0,05	0,5
Microso di diidila di Hierimento. Ori EN 150 15000.2005			
limite di quantificazione: 0,05		incertezza:	

Ordine dei CHIMICI e dei FISICI della Prov. di Treviso n° A093 Codice Fiscale GSTDRN42R12H823B P.IVA 01627660267 Via Pirzio Biroli n.1 - 31046 ODERZO (TV)

Triggiano, 23 ottobre 2020

Certificato n° 20LA33911

CERTIFICATO ANALISI

1,2,4 - Triclorobenzene		μg/l	< 0,1	190
Metodo di analisi di riferimento: UNI EN ISO 1568	80:2005			
	limite di quantificazione: 0,1		incertezza:	
,2,4,5 - Tetraclorobenzene		μg/l	< 0,1	1,8
Metodo di analisi di riferimento: EPA 8270E			,	
	limite di quantificazione: 0,1		incertezza:	
Pentaclorobenzene		μg/l	< 0,5	5
Metodo di analisi di riferimento: EPA 8270E			-,-	
	limite di quantificazione: 0,5		incertezza:	
saclorobenzene (HCB)		μg/l	< 0,001	0,01
Metodo di analisi di riferimento: EPA 8270E			,	
	limite di quantificazione: 0,001		incertezza:	
? - clorofenolo		μg/l	< 1	180
Metodo di analisi di riferimento: EPA 8270E		10		
	limite di quantificazione: 1		incertezza:	
2,4 - Diclorofenolo		μg/l	< 1	110
Metodo di analisi di riferimento: EPA 8270E				
	limite di quantificazione: 1		incertezza:	
2,4,6 - Triclorofenolo		μg/l	< 0,5	5
Metodo di analisi di riferimento: EPA 8270E			·	•
	limite di quantificazione: 0,5		incertezza:	
Pentaclorofenolo		μg/l	< 0,05	0,5
Metodo di analisi di riferimento: EPA 8270E				
	limite di quantificazione: 0,05		incertezza:	
Maclor		μg/l	< 0,01	0,1
Metodo di analisi di riferimento: EPA 8270E			10,01	
	limite di quantificazione: 0,01		incertezza:	
ıldrin		μg/l	< 0,003	0,03
Metodo di analisi di riferimento: EPA 8270E		L9.1	. 5,555	
	limite di quantificazione: 0,003		incertezza:	
Atrazina		μg/l	< 0,01	0,3
Metodo di analisi di riferimento: EPA 8270E			,	l
	limite di quantificazione: 0,01		incertezza:	

Ordine dei CHIMICI e dei FISICI della Prov. di Treviso n° A093 Codice Fiscale GSTDRN42R12H823B P.IVA 01627660267 Via Pirzio Biroli n.1 - 31046 ODERZO (TV)

Triggiano, 23 ottobre 2020

Certificato n° 20LA33911

CERTIFICATO ANALISI

			T
Alfa-esacioroesano	μg/l	< 0,01	0,1
Metodo di analisi di riferimento: EPA 8270E			
limite di quantificazione: 0,01		incertezza:	
Beta-esacloroesano		1004	0.4
Metodo di analisi di riferimento: EPA 8270E	μg/l	< 0,01	0,1
, , , , , , , , , , , , , , , , , , ,			
limite di quantificazione: 0,01		incertezza:	
Gamma-esacloroesano (lindano)	μg/l	< 0,01	0,1
Metodo di analisi di riferimento: EPA 8270E		,	
limite di quantificazione: 0,01		incertezza:	
Clordano	ug/l	< 0,01	0,1
Metodo di analisi di riferimento: EPA 8270E	μg/l	~ 0,0 I	0,1
limite di quantificazione: 0,01		incertezza:	
DDD, DDT, DDE	μg/l	< 0,01	0,1
Metodo di analisi di riferimento: EPA 8270E			
limite di quantificazione: 0,01		incertezza:	
Dieldrin	μg/l	< 0,003	0,03
Metodo di analisi di riferimento: EPA 8270E			
limite di quantificazione: 0,003		incertezza:	
Endrin	μg/l	< 0,01	0,1
Metodo di analisi di riferimento: EPA 8270E	P9,.	30,01	<u> </u>
limite di quantificazione: 0,01		incertezza:	
Sommatoria fitofarmaci (punto 86, tabella 2, allegato 5, titolo V d. Lgs	μg/l	< 0,05	0,5
152/2006) Metodo di analisi di riferimento: EPA 8270E		,	
limite di quantificazione: 0,05		incertezza:	
Clorpirifos	μg/l	< 0,1	
Metodo di analisi di riferimento: EPA 8270E			
limite di quantificazione: 0,1		incertezza:	
Dimetoato EDA 00305	μg/l	< 0,1	
Metodo di analisi di riferimento: EPA 8270E			
limite di quantificazione: 0,1		incertezza:	
Deltametrina	μg/l	< 0,1	
Metodo di analisi di riferimento: EPA 8270E	µу/і	~ 0, 1	
limite di quantificazione: 0,1		incertezza:	

Ordine dei CHIMICI e dei FISICI della Prov. di Treviso n° A093 Codice Fiscale GSTDRN42R12H823B P.IVA 01627660267 Via Pirzio Biroli n.1 - 31046 ODERZO (TV)

Triggiano, 23 ottobre 2020

Certificato nº 20LA33911

CERTIFICATO ANALISI

(valido a tutti gli effetti come da D. L. n° 842/28)

Fention		μg/l	< 0,1	
Metodo di analisi di riferimento: EPA 8270E			•	
	limite di quantificazione: 0,1		incertezza:	
Oxifluorfen		μg/l	< 0,1	
Metodo di analisi di riferimento: EPA 8270E			3,5	I
	limite di quantificazione: 0,1		incertezza:	
Paration		μg/l	< 0,1	
Metodo di analisi di riferimento: EPA 8270E				
	limite di quantificazione: 0,1		incertezza:	
Simazina		μg/l	< 0,1	
Metodo di analisi di riferimento: EPA 8270E			•	·
	limite di quantificazione: 0,1		incertezza:	
Sommatoria pesticidi fosforati		μg/l	< 0,1	
Metodo di analisi di riferimento: EPA 8270E			'	-
	limite di quantificazione: 0,1		incertezza:	
PCB		μg/l	< 0,001	0,01
Metodo di analisi di riferimento: APAT CNR IRSA	5110 Man 29 2003	<u> </u>		
	limite di quantificazione: 0,001		incertezza:	

Note:

La determinazione dei metalli è stata effettuata sul campione filtrato e acidificato. Nel calcolo della concentrazione degli elementi in traccia non viene considerato il recupero determinato dal laboratorio il quale risulta essere compreso tra 90 e 110 %.

L'incertezza di misura riportata nel presente certificato di analisi è espressa come incertezza estesa con un fattore di copertura (k) pari a 2 corrispondente a un livello di fiducia di circa 95%.

I risultati delle analisi si riferiscono ESCLUSIVAMENTE al campione esaminato; si declina ogni responsabilità nei casi di utilizzo del presente atto in difformità agli usi consentiti dalla Legge. Le analisi da eseguire sono state commissionate dal committente e dunque si declina ogni responsabilità in merito alla completezza delle informazioni.

Le analisi sono state eseguite dalla CHIMIE Srl e i LABORATORI ANALISI CHIMICHE DOTT. ADRIANO GIUSTO - SERVIZI AMBIENTE S.R.L., accreditato al n. 0128L, del gruppo LIFEANALYTICS.

Il chimico

Laboratorio Analisi Chimiche Dott. A. Giusto Servizi Ambiente S.r.I. - Chimie S.r.I. Gruppo LIFEANALYTICS

Tel. 0804621899 – info.chimie@lifeanalytics.it Laboratori Conformi alla norma UNI CEI EN ISO/IEC 17025:2018 Laboratori Certificati UNI EN ISO 9001:2015 e UNI EN ISO 14001:2015

Ordine dei CHIMICI e dei FISICI della Prov. di Treviso n° A093 Codice Fiscale GSTDRN42R12H823B P.IVA 01627660267 Via Pirzio Biroli n.1 - 31046 ODERZO (TV)

Triggiano, 23 ottobre 2020

Certificato n° 20LA33912

CERTIFICATO ANALISI

(valido a tutti gli effetti come da D. L. n° 842/28)

COMMITTENTE: FORMICA AMBIENTE srl - Via Groenlandia 47 - Roma

ETICHETTA: Campione di acqua di falda prelevato dal pozzo n° **PR1** della discarica per rifiuti non pericolosi sita in c.da Formica (BR)

Data ricezione campione: 24/09/20 Profondità della falda: 41,9 m

Il campione è stato prelevato dal tecnico dello studio CHIMIE Srl, P. Chim. G. Cipriano come da verbale nº 74/09

RISULTATI

PARAMETRO	unità di misura	valore determinato	D. Lgs. 152/06 Tab. 2 allegato 5 alla parte IV Titolo V
рН		7,38	
Metodo di analisi di riferimento: UNI EN ISO 10523:2012			•
limite di quantificazione: > 1 e < 13		incertezza: ±	0,12
Temperatura	°C	20,5	
Metodo di analisi di riferimento: APAT CNR IRSA 2100 Man 29 2003			·
limite di quantificazione: 1		incertezza: ±	0,2
Ossigeno disciolto	mg/l	8,55	
Metodo di analisi di riferimento: Strumentale - Sensore di Ossigeno Disciolto a luminescenza LDO			·
limite di quantificazione: 0,5		incertezza: ±	0,86
Potenziale Redox	mV	133,6	
Metodo di analisi di riferimento: Strumentale - Sensore ORP			
limite di quantificazione: 10		incertezza: ±	13,4
Conducibilità	uS/cm a 20 °C	3490	
Metodo di analisi di riferimento: UNI EN 27888:1995			
limite di quantificazione: 10		incertezza: ±	69,8
Ossidabilità O2	mg/l	1,10	
Metodo di analisi di riferimento: metodo Tritrimetrico (secondo Kubel), ISTISAN 07/31			-
limite di quantificazione: 0,5		incertezza: ±	0,09
Domanda biochimica di ossigeno (BOD5) a 20°C senza nitrificazione	mgO ₂ /I	< 0,5	
Metodo di analisi di riferimento: APAT CNR IRSA 5120 Man 29 2003		•	ı
limite di quantificazione: 0,5		incertezza:	
Carbonio organico totale (TOC)	mg/l	0,4	
Metodo di analisi di riferimento: APAT CNR IRSA 5040 Man 29 2003			· · · · · · · · · · · · · · · · · · ·
limite di quantificazione: 0,1		incertezza: ±	0,1

Ordine dei CHIMICI e dei FISICI della Prov. di Treviso n° A093 Codice Fiscale GSTDRN42R12H823B P.IVA 01627660267 Via Pirzio Biroli n.1 - 31046 ODERZO (TV)

Triggiano, 23 ottobre 2020

Certificato n° 20LA33912

CERTIFICATO ANALISI

Durezza totale		°F	65	
Metodo di analisi di riferimento: APAT CNR IRSA 2040 A Man 29 200	3			
limite di quar	ntificazione: 5		incertezza: ± 1	
·				
ianuri		μg/l	< 1	50
Metodo di analisi di riferimento: APAT CNR IRSA 4070 Man 29 2003				
limite di quar	ntificazione: 1		incertezza:	
luoruri		mg/l	< 0,1	1,5
Metodo di analisi di riferimento: UNI EN ISO 10304-1:2009		nig/i	< 0,1	1,5
limite di quar	ntificazione: 0,1		incertezza:	
litriti come NO2		μg/l	< 50	500
Metodo di analisi di riferimento: UNI EN ISO 10304-1:2009				
limite di quar	ntificazione: 50		incertezza:	
olfati		mg/l	156	250
Metodo di analisi di riferimento: UNI EN ISO 10304-1:2009				
P. 9. P.	US - 1 - 0.4			
limite di quar	ntificazione: 0,1		incertezza: ± 16	
loruri		mg/l	1092	
Metodo di analisi di riferimento: UNI EN ISO 10304-1:2009				
limite di qua	ntificazione: 0,1		incertezza: ± 10	0.2
iiiillo di qua	numouzione: 0,1		moortozza. 1 10	· · · · · · · · · · · · · · · · · · ·
litrati come NO3		mg/l	15	
Metodo di analisi di riferimento: UNI EN ISO 10304-1:2009				·
limite di quar	ntificazione: 0,1		incertezza: ± 2	
mmoniaca come NH4		mg/l	< 0,05	
Metodo di analisi di riferimento: UNICHIM 2363:2009				
limite di quar	ntificazione: 0,05		incertezza:	
Hamadada				
Illuminio Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016		μg/l	<1	200
Motodo di difuliali di Friorimonio. Civi Elvi 100 172572.2010				
limite di quar	ntificazione: 1		incertezza:	
ntimonio		μg/l	< 0,3	5
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016			- 0,0	
limite di quar	ntificazione: 0,3		incertezza:	
urgento		μg/l	<1	10
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016		ra''	, ,	
limite di quar	ntificazione: 1		incertezza:	

Ordine dei CHIMICI e dei FISICI della Prov. di Treviso n° A093 Codice Fiscale GSTDRN42R12H823B P.IVA 01627660267 Via Pirzio Biroli n.1 - 31046 ODERZO (TV)

Triggiano, 23 ottobre 2020

Certificato n° 20LA33912

CERTIFICATO ANALISI

10 4 1000
1000
1000
1000
1000
1000
1000
1000
5
5
5
50
50
5
200

Ordine dei CHIMICI e dei FISICI della Prov. di Treviso n° A093 Codice Fiscale GSTDRN42R12H823B P.IVA 01627660267 Via Pirzio Biroli n.1 - 31046 ODERZO (TV)

Triggiano, 23 ottobre 2020

Certificato n° 20LA33912

CERTIFICATO ANALISI

Manganese		μg/l	< 1		50
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016				-	
limite	di quantificazione: 1		incertezza:		
			T		
lercurio		μg/l	< 0,1		1
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016					
limite	di quantificazione: 0,1		incertezza:		
lolibdeno		μg/l	2,4		
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016		m9 ⁷ ·	_,-		
limite	di quantificazione: 1		incertezza: ± (0,2	
lichelio		μg/l	1,7		20
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016					
limite	di quantificazione: 1		incertezza:		
	•				
Piombo		μg/l	< 1		10
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016					
limite	di quantificazione: 1		incertezza:		
Potassio		mg/l	20		
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016	<u> </u>	1119/1	20		
limite	di quantificazione: 0,001		incertezza: ± 2	2	
Rame		μg/l	< 1		1000
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016					
limite	di quantificazione: 1		incertezza:		
			1		
Selenio		μg/l	< 0,3		10
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016					
limite	di quantificazione: 0,3		incertezza:		
Sodio		mg/l	453		
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016			700		
P. 9.	V 0004			45	
iiffile	di quantificazione: 0,001		incertezza: ± 4	45	
tagno		μg/l	< 1		
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016					
limite	di quantificazione: 1		incertezza:		
			ı		
allio		μg/l	< 0,2		2
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016					
limite	di quantificazione: 0,2		incertezza:		

Ordine dei CHIMICI e dei FISICI della Prov. di Treviso n° A093 Codice Fiscale GSTDRN42R12H823B P.IVA 01627660267 Via Pirzio Biroli n.1 - 31046 ODERZO (TV)

Triggiano, 23 ottobre 2020

Certificato n° 20LA33912

CERTIFICATO ANALISI

			ı	T
Tellurio	20040	μg/l	< 1	
Metodo di analisi di riferimento: UNI EN ISO 17294	-2:2016			
	limite di quantificazione: 1		incertezza:	
Vanadio		uall	2.5	
Metodo di analisi di riferimento: UNI EN ISO 17294	-2:2016	μg/l	3,5	
	limite di quantificazione: 1		incertezza: ± 0,4	
Zinco		μg/l	5	3000
Metodo di analisi di riferimento: UNI EN ISO 17294	-2:2016		-	I
	limite di quantificazione: 1		incertezza: ± 1	
	iimie ui quantilicazione. T		IIICEITEZZA. 1	
Benzene		μg/l	< 0,1	1
Metodo di analisi di riferimento: UNI EN ISO 15680:	2005			•
	limite di quantificazione: 0,1		incertezza:	
			T	ı
Etilbenzene		μg/l	< 0,1	50
Metodo di analisi di riferimento: UNI EN ISO 15680:	2005			
	limite di quantificazione: 0,1		incertezza:	
Stirene			- 0.4	05
Metodo di analisi di riferimento: UNI EN ISO 15680:	2005	μg/l	< 0,1	25
motodo di dilalioi di monmonto.				
	limite di quantificazione: 0,1		incertezza:	
Toluene		μg/l	< 0,1	15
Metodo di analisi di riferimento: UNI EN ISO 15680:	2005		-,-	
	limite di mandificazione 0.4			
	limite di quantificazione: 0,1		incertezza:	
p-Xilene		μg/l	< 0,1	10
Metodo di analisi di riferimento: UNI EN ISO 15680:	2005			<u>'</u>
	limite di quantificazione: 0,1		incertezza:	
Benzo(a)antracene		μg/l	< 0,01	0,1
Metodo di analisi di riferimento: EPA 8270E				
	limite di quantificazione: 0,01		incertezza:	
D (-)			10.661	
Benzo(a)pirene Metodo di analisi di riferimento: EPA 8270E		μg/l	< 0,001	0,01
Mictodo di ariansi di meninento. EFA 0210E				
	limite di quantificazione: 0,001		incertezza:	
Benzo(b)fluorantene		μg/l	< 0,01	0,1
Metodo di analisi di riferimento: EPA 8270E		μ9/1	~ U,U I	0,1
- · · · · · · · · · · · · · · · · · · ·				
	limite di quantificazione: 0,01		incertezza:	

Ordine dei CHIMICI e dei FISICI della Prov. di Treviso n° A093 Codice Fiscale GSTDRN42R12H823B P.IVA 01627660267 Via Pirzio Biroli n.1 - 31046 ODERZO (TV)

Triggiano, 23 ottobre 2020

Certificato n° 20LA33912

CERTIFICATO ANALISI

Benzo(k)fluorantene		μg/l	< 0,005	0,05
Metodo di analisi di riferimento: EPA 8270E				
limite o	di quantificazione: 0,005		incertezza:	
Benzo(g,h,i)perilene Metodo di analisi di riferimento: EPA 8270E		μg/l	< 0,001	0,01
Metodo di ariansi di Intermento. El A 0270E				
limite o	di quantificazione: 0,001		incertezza:	
Prisene		μg/l	< 0,01	5
Metodo di analisi di riferimento: EPA 8270E			ļ.	I
limite o	di quantificazione: 0,01		incertezza:	
Nihanya/a h)antwaana			< 0.004	0.04
Dibenzo(a,h)antracene Metodo di analisi di riferimento: EPA 8270E		μg/l	< 0,001	0,01
limite o	di quantificazione: 0,001		incertezza:	
ndeno(1,2,3-c,d)pirene		μg/l	< 0,01	0,1
Metodo di analisi di riferimento: EPA 8270E			•	•
limite o	di quantificazione: 0,01		incertezza:	
Pirene		μg/l	< 0,01	50
Metodo di analisi di riferimento: EPA 8270E			5,5.	
limite o	di quantificazione: 0,01		incertezza:	
	- (". I - V - I - I 4E0(0000)		10.04	1
Sommatoria IPA (punto 38, tabella 2, allegato 5 Metodo di analisi di riferimento: EPA 8270E	o, titolo V d. Lgs 152/2006)	μg/l	< 0,01	0,1
limite o	di quantificazione: 0,01		incertezza:	
Clorometano		μg/l	< 0,1	1,5
Metodo di analisi di riferimento: UNI EN ISO 15680:2005			-	
limite o	di quantificazione: 0,1		incertezza:	
Cloroformio (triclorometano)		μg/l	< 0,01	0,15
Metodo di analisi di riferimento: UNI EN ISO 15680:2005				
limite o	di quantificazione: 0,01		incertezza:	
Cloruro di vinile		μg/l	< 0,05	0,5
Metodo di analisi di riferimento: UNI EN ISO 15680:2005		F9	-,	3,0
limite o	di quantificazione: 0,05		incertezza:	
1,2 - Dicloroetano		μg/l	< 0,1	3
Metodo di analisi di riferimento: UNI EN ISO 15680:2005				
limite o	di quantificazione: 0,1		incertezza:	

Ordine dei CHIMICI e dei FISICI della Prov. di Treviso n° A093 Codice Fiscale GSTDRN42R12H823B P.IVA 01627660267 Via Pirzio Biroli n.1 - 31046 ODERZO (TV)

Triggiano, 23 ottobre 2020

Certificato n° 20LA33912

CERTIFICATO ANALISI

1,1 - Dicloroetilene	μg/l	< 0,005	0,05
Metodo di analisi di riferimento: UNI EN ISO 15680:2005	μ9/1	- 0,000	0,03
limite di quantificazione: 0,005		incertezza:	
ricloroetilene	μg/l	< 0,1	1,5
Metodo di analisi di riferimento: UNI EN ISO 15680:2005			
limite di quantificazione: 0,1		incertezza:	
etracloroetilene	μg/l	< 0,1	1,1
Metodo di analisi di riferimento: UNI EN ISO 15680:2005			
limite di quantificazione: 0,1		incertezza:	
acalarahutadiana (UCDD)	/!	4 0 04	0.45
saclorobutadiene (HCBD) Metodo di analisi di riferimento: UNI EN ISO 15680:2005	μg/l	< 0,01	0,15
limite di quantificazione: 0,01		incertezza:	
ommatoria organoalogenati (punto 47, tabella 2, allegato 5, titolo V d. Lgs			
52/2006)	μg/l	< 1	10
Metodo di analisi di riferimento: UNI EN ISO 15680:2005			
limite di quantificazione: 1		incertezza:	
			ı
1 - Dicloroetano	µg/l	< 0,1	810
Metodo di analisi di riferimento: UNI EN ISO 15680:2005			
limite di quantificazione: 0,1		incertezza:	
,2 - Dicloroetilene	μg/l	< 0,1	60
Metodo di analisi di riferimento: UNI EN ISO 15680:2005	ру/і ————————————————————————————————————	\ 0,1	00
limite di quantificazione: 0,1		incertezza:	
,2 - Dicloropropano	μg/l	< 0,01	0,15
Metodo di analisi di riferimento: UNI EN ISO 15680:2005		,	
limite di quantificazione: 0,01		incertezza:	
iii nie di quantinoazione. 0,01		incertezza.	
,1,2 - Tricloroetano	μg/l	< 0,01	0,2
Metodo di analisi di riferimento: UNI EN ISO 15680:2005		•	·
limite di quantificazione: 0,01		incertezza:	
		1	I
,2,3 - Tricloropropano	μg/l	< 0,001	0,001
Metodo di analisi di riferimento: UNI EN ISO 15680:2005			
limite di quantificazione: 0,001		incertezza:	
4.0.0 Tetra demostra		. 0 60=	
1,2,2 - Tetracloroetano Metodo di analisi di riferimento: UNI EN ISO 15680:2005	μg/l	< 0,005	0,05
metodo di amaisi di Meninerito. Oni En 150 15000.2005			
limite di quantificazione: 0,005		incertezza:	

Ordine dei CHIMICI e dei FISICI della Prov. di Treviso nº A093 Codice Fiscale GSTDRN42R12H823B P.IVA 01627660267 Via Pirzio Biroli n.1 - 31046 ODERZO (TV)

Triggiano, 23 ottobre 2020

Certificato n° 20LA33912

CERTIFICATO ANALISI

ribromometano	μg/l	< 0,01	0,3
Metodo di analisi di riferimento: UNI EN ISO 15680:2005			
limite di quantificazione: 0,01		incertezza:	
2 - Dibromoetano	μg/l	< 0,001	0,001
Metodo di analisi di riferimento: UNI EN ISO 15680:2005	ру/і	< 0,001	0,001
limite di quantificazione: 0,001		incertezza:	
ibromoclorometano	μg/l	< 0,01	0,13
Metodo di analisi di riferimento: UNI EN ISO 15680:2005		'	'
limite di quantificazione: 0,01		incertezza:	
romodiclorometano	μg/l	< 0,01	0,17
Metodo di analisi di riferimento: UNI EN ISO 15680:2005		3,5 -	<u> </u>
limite di quantificazione: 0,01		incertezza:	
mine a quantinoazione. 0,01		mocrtezza.	
litrobenzene	μg/l	< 0,3	3,5
Metodo di analisi di riferimento: EPA 8260 rev 3 2006			
limite di quantificazione: 0,3		incertezza:	
,2 - Dinitrobenzene	μg/l	< 0,3	15
Metodo di analisi di riferimento: EPA 8260 rev 3 2006		'	<u>'</u>
limite di quantificazione: 0,3		incertezza:	
,3- dinitrobenzene	μg/l	< 0,3	3,7
Metodo di analisi di riferimento: EPA 8260 rev 3 2006			
limite di quantificazione: 0,3		incertezza:	
Eloronitrobenzeni (ognumo) Metodo di analisi di riferimento: EPA 8260 rev 3 2006	μg/l	< 0,05	0,5
Metodo di analisi di Nierimenio. EPA 6200 lev 3 2006			
limite di quantificazione: 0,05		incertezza:	
lonoclorobenzene	μg/l	< 0,1	40
Metodo di analisi di riferimento: UNI EN ISO 15680:2005		'	'
limite di quantificazione: 0,1		incertezza:	
2 - diclorobenzene	μg/l	< 0,1	270
Metodo di analisi di riferimento: UNI EN ISO 15680:2005		- 7 -	
limite di quantificazione: 0,1		incertezza:	
,4 - diclorobenzene Metodo di analisi di riferimento: UNI EN ISO 15680:2005	μg/l	< 0,05	0,5
Microso di diidili di Hiefilifetito. Ori EN 150 15000.2005			
limite di quantificazione: 0,05		incertezza:	

Ordine dei CHIMICI e dei FISICI della Prov. di Treviso n° A093 Codice Fiscale GSTDRN42R12H823B P.IVA 01627660267 Via Pirzio Biroli n.1 - 31046 ODERZO (TV)

Triggiano, 23 ottobre 2020

Certificato n° 20LA33912

CERTIFICATO ANALISI

,2,4 - Triclorobenzene		μg/l	< 0,1	190
Metodo di analisi di riferimento: UNI EN ISO 1568	0:2005		<u> </u>	•
	limite di quantificazione: 0,1		incertezza:	
		_		1
2,4,5 - Tetraclorobenzene Metodo di analisi di riferimento: EPA 8270E		μg/l	< 0,1	1,8
Metodo di analisi di Menmento. EPA 6270E				
	limite di quantificazione: 0,1		incertezza:	
entaclorobenzene		μg/l	< 0,5	5
Metodo di analisi di riferimento: EPA 8270E			'	'
	limite di quantificazione: 0,5		incertezza:	
saclorobenzene (HCB)		μg/l	< 0,001	0,01
Metodo di analisi di riferimento: EPA 8270E				
	limite di quantificazione: 0,001		incertezza:	
- clorofenolo		μg/l	< 1	180
Metodo di analisi di riferimento: EPA 8270E		F97.	* 1	
	limite di quantificazione: 1		incertezza:	
4 - Diclorofenolo		μg/l	< 1	110
Metodo di analisi di riferimento: EPA 8270E				
	limite di quantificazione: 1		incertezza:	
4,6 - Triclorofenolo		μg/l	< 0,5	5
Metodo di analisi di riferimento: EPA 8270E				
	limite di quantificazione: 0,5		incertezza:	
entaclorofenolo		μg/l	< 0,05	0,5
Metodo di analisi di riferimento: EPA 8270E		13	3,60	.,.
	limite di quantificazione: 0,05		incertezza:	
laclor		μg/l	< 0,01	0,1
Metodo di analisi di riferimento: EPA 8270E			- 0,01	
	limite di quantificazione: 0,01		incertezza:	
ldrin		μg/l	< 0,003	0,03
Metodo di analisi di riferimento: EPA 8270E		L9.,	,	1 2,00
	limite di quantificazione: 0,003		incertezza:	
function a			10.04	
trazina Metodo di analisi di riferimento: EPA 8270E		µg/l	< 0,01	0,3
stodd di didaidi di incinicino. Li A 0210E				
	limite di quantificazione: 0,01		incertezza:	

Ordine dei CHIMICI e dei FISICI della Prov. di Treviso n° A093 Codice Fiscale GSTDRN42R12H823B P.IVA 01627660267 Via Pirzio Biroli n.1 - 31046 ODERZO (TV)

Triggiano, 23 ottobre 2020

Certificato n° 20LA33912

CERTIFICATO ANALISI

			T
Alfa-esacioroesano	μg/l	< 0,01	0,1
Metodo di analisi di riferimento: EPA 8270E			
limite di quantificazione: 0,01		incertezza:	
Beta-esacloroesano		1004	0.4
Metodo di analisi di riferimento: EPA 8270E	μg/l	< 0,01	0,1
, , , , , , , , , , , , , , , , , , ,			
limite di quantificazione: 0,01		incertezza:	
Gamma-esacloroesano (lindano)	μg/l	< 0,01	0,1
Metodo di analisi di riferimento: EPA 8270E		,	
limite di quantificazione: 0,01		incertezza:	
Clordano	ug/l	< 0,01	0,1
Metodo di analisi di riferimento: EPA 8270E	μg/l	~ 0,0 I	0,1
limite di quantificazione: 0,01		incertezza:	
DDD, DDT, DDE	μg/l	< 0,01	0,1
Metodo di analisi di riferimento: EPA 8270E			
limite di quantificazione: 0,01		incertezza:	
Dieldrin	μg/l	< 0,003	0,03
Metodo di analisi di riferimento: EPA 8270E			
limite di quantificazione: 0,003		incertezza:	
Endrin	μg/l	< 0,01	0,1
Metodo di analisi di riferimento: EPA 8270E	P9,.	30,01	<u> </u>
limite di quantificazione: 0,01		incertezza:	
Sommatoria fitofarmaci (punto 86, tabella 2, allegato 5, titolo V d. Lgs	μg/l	< 0,05	0,5
152/2006) Metodo di analisi di riferimento: EPA 8270E		,	
limite di quantificazione: 0,05		incertezza:	
Clorpirifos	μg/l	< 0,1	
Metodo di analisi di riferimento: EPA 8270E			
limite di quantificazione: 0,1		incertezza:	
Dimetoato EDA 00305	μg/l	< 0,1	
Metodo di analisi di riferimento: EPA 8270E			
limite di quantificazione: 0,1		incertezza:	
Deltametrina	μg/l	< 0,1	
Metodo di analisi di riferimento: EPA 8270E	µу/і	~ 0, 1	
limite di quantificazione: 0,1		incertezza:	

Ordine dei CHIMICI e dei FISICI della Prov. di Treviso n° A093 Codice Fiscale GSTDRN42R12H823B P.IVA 01627660267 Via Pirzio Biroli n.1 - 31046 ODERZO (TV)

Triggiano, 23 ottobre 2020

Certificato n° 20LA33912

CERTIFICATO ANALISI

(valido a tutti gli effetti come da D. L. n° 842/28)

Fention		μg/l	< 0,1	
Metodo di analisi di riferimento: EPA 8270E				
	limite di quantificazione: 0,1		incertezza:	
				T
Oxifluorfen		μg/l	< 0,1	
Metodo di analisi di riferimento: EPA 8270E				
	limite di quantificazione: 0,1		incertezza:	
Paration		μg/l	< 0,1	
Metodo di analisi di riferimento: EPA 8270E			'	1
	limite di quantificazione: 0,1		incertezza:	
Simazina		μg/l	< 0,1	
Metodo di analisi di riferimento: EPA 8270E				
	limite di quantificazione: 0,1		incertezza:	
Sommatoria pesticidi fosforati		μg/l	< 0,1	
Metodo di analisi di riferimento: EPA 8270E				1
	limite di quantificazione: 0,1		incertezza:	
PCB		μg/l	< 0,001	0,01
Metodo di analisi di riferimento: APAT CNR IRS	A 5110 Man 29 2003		•	
	limite di quantificazione: 0,001		incertezza:	

Note:

La determinazione dei metalli è stata effettuata sul campione filtrato e acidificato. Nel calcolo della concentrazione degli elementi in traccia non viene considerato il recupero determinato dal laboratorio il quale risulta essere compreso tra 90 e 110 %.

L'incertezza di misura riportata nel presente certificato di analisi è espressa come incertezza estesa con un fattore di copertura (k) pari a 2 corrispondente a un livello di fiducia di circa 95%.

I risultati delle analisi si riferiscono ESCLUSIVAMENTE al campione esaminato; si declina ogni responsabilità nei casi di utilizzo del presente atto in difformità agli usi consentiti dalla Legge. Le analisi da eseguire sono state commissionate dal committente e dunque si declina ogni responsabilità in merito alla completezza delle informazioni.

Le analisi sono state eseguite dalla CHIMIE Srl e i LABORATORI ANALISI CHIMICHE DOTT. ADRIANO GIUSTO - SERVIZI AMBIENTE S.R.L., accreditato al n. 0128L, del gruppo LIFEANALYTICS.

Il chimico

Laboratorio Analisi Chimiche Dott. A. Giusto Servizi Ambiente S.r.I. - Chimie S.r.I. Gruppo LIFEANALYTICS

Tel. 0804621899 – info.chimie@lifeanalytics.it Laboratori Conformi alla norma UNI CEI EN ISO/IEC 17025:2018 Laboratori Certificati UNI EN ISO 9001:2015 e UNI EN ISO 14001:2015

Ordine dei CHIMICI e dei FISICI della Prov. di Treviso n° A093 Codice Fiscale GSTDRN42R12H823B P.IVA 01627660267 Via Pirzio Biroli n.1 - 31046 ODERZO (TV)

Triggiano, 23 ottobre 2020

Certificato n° 20LA33913

CERTIFICATO ANALISI

(valido a tutti gli effetti come da D. L. n° 842/28)

COMMITTENTE: FORMICA AMBIENTE srl - Via Groenlandia 47 - Roma

ETICHETTA: Campione di acqua di falda prelevato dal pozzo n° **PR2** della discarica per rifiuti non pericolosi sita in c.da Formica (BR)

Data ricezione campione: 24/09/20 Profondità della falda: 37,7 m

Il campione è stato prelevato dal tecnico dello studio CHIMIE Srl, P. Chim. G. Cipriano come da verbale nº 74/09

RISULTATI

PARAMETRO	unità di misura	valore determinato	D. Lgs. 152/06 Tab. 2 allegato 5 alla parte IV Titolo V
pH		7,39	
Metodo di analisi di riferimento: UNI EN ISO 10523:2012			'
limite di quantificazione: > 1 e < 13		incertezza: ±	0,12
Temperatura	°C	20,6	
Metodo di analisi di riferimento: APAT CNR IRSA 2100 Man 29 2003			•
limite di quantificazione: 1		incertezza: ±	0,2
Ossigeno disciolto	mg/l	11,04	
Metodo di analisi di riferimento: Strumentale - Sensore di Ossigeno Disciolto a luminescenza LDO			·
limite di quantificazione: 0,5		incertezza: ±	1,10
Potenziale Redox	mV	127,7	
Metodo di analisi di riferimento: Strumentale - Sensore ORP			·
limite di quantificazione: 10		incertezza: ±	12,8
Conducibilità	uS/cm a 20 °C	3510	
Metodo di analisi di riferimento: UNI EN 27888:1995			·
limite di quantificazione: 10		incertezza: ±	70,2
Ossidabilità O2	mg/l	0,50	
Metodo di analisi di riferimento: metodo Tritrimetrico (secondo Kubel), ISTISAN 07/31		•	-
limite di quantificazione: 0,5		incertezza: ±	0,04
Domanda biochimica di ossigeno (BOD5) a 20°C senza nitrificazione	mgO ₂ /I	< 0,5	
Metodo di analisi di riferimento: APAT CNR IRSA 5120 Man 29 2003			1
limite di quantificazione: 0,5		incertezza:	
Carbonio organico totale (TOC)	mg/l	0,20	
Metodo di analisi di riferimento: APAT CNR IRSA 5040 Man 29 2003			,
limite di quantificazione: 0,1		incertezza: ±	0,04

Ordine dei CHIMICI e dei FISICI della Prov. di Treviso n° A093 Codice Fiscale GSTDRN42R12H823B P.IVA 01627660267 Via Pirzio Biroli n.1 - 31046 ODERZO (TV)

Triggiano, 23 ottobre 2020

Certificato n° 20LA33913

CERTIFICATO ANALISI

Durezza totale	°F	65	
Metodo di analisi di riferimento: APAT CNR IRSA 2040 A Man 29 2003			'
limite di quantificazion	ne: 5	incertezza: ±	1
			,
ianuri	µg/I	< 1	50
Metodo di analisi di riferimento: APAT CNR IRSA 4070 Man 29 2003			
limite di quantificazio	ne: 1	incertezza:	
Netodo di analisi di riferimento: UNI EN ISO 10304-1:2009	mg/l	< 0,1	1,5
Metodo di analisi di riferimento: UNI EN ISO 10304-1:2009			
limite di quantificazion	ne: 0,1	incertezza:	
itriti come NO2	μg/l	< 50	500
Metodo di analisi di riferimento: UNI EN ISO 10304-1:2009	μ9/1	- 30	300
limite di quantificazion	ne: 50	incertezza:	
olfati	mg/l	144	250
Metodo di analisi di riferimento: UNI EN ISO 10304-1:2009	9.		
limite di quantificazion	ne: 0,1	incertezza: ±	14
loruri	mg/l	998	
Metodo di analisi di riferimento: UNI EN ISO 10304-1:2009			I
limite di guantificazioni	201.0.1	incertezza: ±	00.9
limite di quantificazion	ie. 0,1	incertezza. ±	99,0
itrati come NO3	mg/l	13	
Metodo di analisi di riferimento: UNI EN ISO 10304-1:2009			•
limite di quantificazion	ne: 0.1	incertezza: ±	1
mmoniaca come NH4	mg/l	< 0,05	
Metodo di analisi di riferimento: UNICHIM 2363:2009			
limite di quantificazio	ne: 0,05	incertezza:	
Illuminio	µg/I	1,6	200
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016			
limite di quantificazion	ne: 1	incertezza:	
ntimonio		-00	
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016	µg/l	< 0,3	5
limite di quantificazio	ne: 0,3	incertezza:	
rgente	n	< 1	10
rgento Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016	μg/l	<u> </u>	10
limite di quantificazion	ne: 1	incertezza:	

Ordine dei CHIMICI e dei FISICI della Prov. di Treviso n° A093 Codice Fiscale GSTDRN42R12H823B P.IVA 01627660267 Via Pirzio Biroli n.1 - 31046 ODERZO (TV)

Triggiano, 23 ottobre 2020

Certificato n° 20LA33913

CERTIFICATO ANALISI

Arsenico	μg/l < 1	10
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016		
limite di quantificazione: 1	incertezza:	
Bario		
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016	µg/I 31	
limite di quantificazione: 1	incertezza: ± 3	
Berillio	μg/l < 0,3	4
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016	· · · · · · · · · · · · · · · · · · ·	
limite di quantificazione: 0,3	incertezza:	
Boro	μg/l 197 1	000
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016		
limite di quantificazione: 1	incertezza: ± 20	
Cadmio	µg/l < 0,3	5
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016	µg/I < 0,3	5
limite di quantificazione: 0,3	incertezza:	
Calcio	mg/l 129	
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016		
limite di quantificazione: 0,001	incertezza: ± 13	
Cobalto Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016	μg/l < 1	50
weloud di alialisi di filefilitetito. Oivi EN 130 17294-2.2010		
limite di quantificazione: 1	incertezza:	
Cromo totale	μg/l < 1	50
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016	P9	
limite di quantificazione: 1	incertezza:	
limite di quantificazione: 1	incertezza.	
Cromo esavalente	µg/l < 0,5	5
Metodo di analisi di riferimento: APAT CNR IRSA n° 3150 Man 29 2003		
limite di quantificazione: 0,5	incertezza:	
	!	
Ferro Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016	μg/l 5,2 2	200
Microso di difalia di Highingrico. Otti Eti 150 17234-2.2010		
limite di quantificazione: 1	incertezza: ± 0,5	
Magnesio	mg/l 79	
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016		
limite di quantificazione: 0,001	incertezza: ± 8	

Ordine dei CHIMICI e dei FISICI della Prov. di Treviso n° A093 Codice Fiscale GSTDRN42R12H823B P.IVA 01627660267 Via Pirzio Biroli n.1 - 31046 ODERZO (TV)

Triggiano, 23 ottobre 2020

Certificato n° 20LA33913

CERTIFICATO ANALISI

Manganese	μg/l	< 1	50
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016			
limite di quantificazione: 1		incertezza:	
Marauria		404	
Mercurio Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016	μg/l	< 0,1	1
limite di quantificazione: 0,1		incertezza:	
Molibdeno	μg/l	2,4	
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016			l
limite di quantificazione: 1		incertezza: ± 0	2
Nichelio	μg/l	1,4	20
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016			
limite di quantificazione: 1		incertezza:	
Piombo	μg/l	< 1	10
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016	μд/і		10
limite di quantificazione: 1		incertezza:	
Potassio	mg/l	21	
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016			'
limite di quantificazione: 0,001		incertezza: ± 2	
Rame	μg/l	< 1	1000
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016	13	•	
limite di guantificazione: 4		incertezza:	
limite di quantificazione: 1		incertezza.	
Selenio	μg/l	< 0,3	10
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016		•	
limite di quantificazione: 0,3		incertezza:	
0 "			
Sodio Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016	mg/l	467	
Wicked di dilata di filoritici. Crit Elvico 1720 / E.E.			
limite di quantificazione: 0,001		incertezza: ± 4	7
Stagno	μg/l	< 1	
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016			1
limite di quantificazione: 1		incertezza:	
Tallio	μg/l	< 0,2	2
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016			
limite di quantificazione: 0,2		incertezza:	

Ordine dei CHIMICI e dei FISICI della Prov. di Treviso n° A093 Codice Fiscale GSTDRN42R12H823B P.IVA 01627660267 Via Pirzio Biroli n.1 - 31046 ODERZO (TV)

Triggiano, 23 ottobre 2020

Certificato n° 20LA33913

CERTIFICATO ANALISI

Tellurio Tellurio		μg/l	< 1	
Metodo di analisi di riferimento: UNI EN ISO 1729	94-2:2016			
	limite di quantificazione: 1		incertezza:	
formation			0.0	T
Vanadio Metodo di analisi di riferimento: UNI EN ISO 1729	24.2:2016	μg/l	3,6	
Wetodo di analisi di Merimento. Givi Elv 130 1723	27-2.2010			
	limite di quantificazione: 1		incertezza: ± 0,4	
Zinco		μg/l	4,7	3000
Metodo di analisi di riferimento: UNI EN ISO 1729	94-2:2016		,	I
	limite di quantificazione: 1		incertezza: ± 0,5	
	innice di quantineazione.		1100110224. ± 0,0	
Benzene		μg/l	< 0,1	1
Metodo di analisi di riferimento: UNI EN ISO 1568	0:2005			
	limite di quantificazione: 0,1		incertezza:	
Etilbenzene			- 0.4	
Metodo di analisi di riferimento: UNI EN ISO 1568	0.2005	μg/l	< 0,1	50
motodo di dilanoi di filorimonio. Offi Elfifoto foto	5.2505			
	limite di quantificazione: 0,1		incertezza:	
Stirene		μg/l	< 0,1	25
Metodo di analisi di riferimento: UNI EN ISO 1568	0:2005		,	
	limite di quantificazione: 0,1		incertezza:	
	innic di quantinoazione. 0,1		mocrtozza.	
Foluene Foluene		μg/l	< 0,1	15
Metodo di analisi di riferimento: UNI EN ISO 1568	0:2005			
	limite di quantificazione: 0,1		incertezza:	
Vilana			104	10
D-Xilene Metodo di analisi di riferimento: UNI EN ISO 1568	0:2005	μg/l	< 0,1	10
	limite di quantificazione: 0,1		incertezza:	
Benzo(a)antracene		μg/l	< 0,01	0,1
Metodo di analisi di riferimento: EPA 8270E			,	
	limite di quantificazione: 0,01		incertezza:	
	iiiiiio di quantinoazione. 0,01		moortozza.	
Benzo(a)pirene		μg/l	< 0,001	0,01
Metodo di analisi di riferimento: EPA 8270E				
	limite di quantificazione: 0,001		incertezza:	
200				
Benzo(b)fluorantene Metodo di analisi di riferimento: EPA 8270E		μg/l	< 0,01	0,1
MELOGO di analisi di filefilhetilo: EPA 82/0E				
	limite di quantificazione: 0,01		incertezza:	

Ordine dei CHIMICI e dei FISICI della Prov. di Treviso n° A093 Codice Fiscale GSTDRN42R12H823B P.IVA 01627660267 Via Pirzio Biroli n.1 - 31046 ODERZO (TV)

Triggiano, 23 ottobre 2020

Certificato n° 20LA33913

CERTIFICATO ANALISI

Benzo(k)fluorantene		μg/l	< 0,005	0,05
Metodo di analisi di riferimento: EPA 8270E				
limit	te di quantificazione: 0,005		incertezza:	
Benzo(g,h,i)perilene		μg/l	< 0,001	0,01
Metodo di analisi di riferimento: EPA 8270E				
limit	te di quantificazione: 0,001		incertezza:	
Crisene		μg/l	< 0,01	5
Metodo di analisi di riferimento: EPA 8270E		F9,.	10,01	
limit	te di quantificazione: 0,01		incertezza:	
Dibenzo(a,h)antracene		μg/l	< 0,001	0,01
Metodo di analisi di riferimento: EPA 8270E				ļ
limit	te di quantificazione: 0,001		incertezza:	
Indeno(1,2,3-c,d)pirene		μg/l	< 0,01	0,1
Metodo di analisi di riferimento: EPA 8270E				
limit	te di quantificazione: 0,01		incertezza:	
Pirene		//	< 0.04	50
Metodo di analisi di riferimento: EPA 8270E		μg/l	< 0,01	50
limit	te di quantificazione: 0,01		incertezza:	
Sommatoria IPA (punto 38, tabella 2, allegato	5, titolo V d. Lgs 152/2006)	μg/l	< 0,01	0,1
Metodo di analisi di riferimento: EPA 8270E	,		,	<u> </u>
limit	te di quantificazione: 0,01		incertezza:	
""""	to a quantineazione. 0,01		incortezza.	
Clorometano		μg/l	< 0,1	1,5
Metodo di analisi di riferimento: UNI EN ISO 15680:2005				
limit	te di quantificazione: 0,1		incertezza:	
Cloroformio (triclorometano)		μg/l	< 0,01	0,15
Metodo di analisi di riferimento: UNI EN ISO 15680:2005				
limit	te di quantificazione: 0,01		incertezza:	
Olement distrib				
Cloruro di vinile Metodo di analisi di riferimento: UNI EN ISO 15680:2005		μg/l	< 0,05	0,5
microdo di analisi di meninetilo. UNI EN 130 13060.2005				
limit	te di quantificazione: 0,05		incertezza:	
1,2 - Dicloroetano		μg/l	< 0,1	3
Metodo di analisi di riferimento: UNI EN ISO 15680:2005		ra''	- 0,1	
limit	te di quantificazione: 0,1		incertezza:	

Ordine dei CHIMICI e dei FISICI della Prov. di Treviso n° A093 Codice Fiscale GSTDRN42R12H823B P.IVA 01627660267 Via Pirzio Biroli n.1 - 31046 ODERZO (TV)

Triggiano, 23 ottobre 2020

Certificato n° 20LA33913

CERTIFICATO ANALISI

1,1 - Dicloroetilene	μg/l	< 0,005	0,05
Metodo di analisi di riferimento: UNI EN ISO 15680:2005	μ9/1	- 0,000	0,03
limite di quantificazione: 0,005		incertezza:	
ricloroetilene	μg/l	< 0,1	1,5
Metodo di analisi di riferimento: UNI EN ISO 15680:2005			
limite di quantificazione: 0,1		incertezza:	
etracloroetilene	μg/l	< 0,1	1,1
Metodo di analisi di riferimento: UNI EN ISO 15680:2005			
limite di quantificazione: 0,1		incertezza:	
acalarahutadiana (UCDD)	/!	4 0 04	0.45
saclorobutadiene (HCBD) Metodo di analisi di riferimento: UNI EN ISO 15680:2005	μg/l	< 0,01	0,15
limite di quantificazione: 0,01		incertezza:	
ommatoria organoalogenati (punto 47, tabella 2, allegato 5, titolo V d. Lgs			
52/2006)	μg/l	< 1	10
Metodo di analisi di riferimento: UNI EN ISO 15680:2005			
limite di quantificazione: 1		incertezza:	
			ı
1 - Dicloroetano	µg/l	< 0,1	810
Metodo di analisi di riferimento: UNI EN ISO 15680:2005			
limite di quantificazione: 0,1		incertezza:	
,2 - Dicloroetilene	μg/l	< 0,1	60
Metodo di analisi di riferimento: UNI EN ISO 15680:2005	ру/і ————————————————————————————————————	\ 0,1	00
limite di quantificazione: 0,1		incertezza:	
,2 - Dicloropropano	μg/l	< 0,01	0,15
Metodo di analisi di riferimento: UNI EN ISO 15680:2005		,	
limite di quantificazione: 0,01		incertezza:	
iii nie di quantinoazione. 0,01		incertezza.	
,1,2 - Tricloroetano	μg/l	< 0,01	0,2
Metodo di analisi di riferimento: UNI EN ISO 15680:2005		•	·
limite di quantificazione: 0,01		incertezza:	
		1	I
,2,3 - Tricloropropano	μg/l	< 0,001	0,001
Metodo di analisi di riferimento: UNI EN ISO 15680:2005			
limite di quantificazione: 0,001		incertezza:	
4.0.0 Tetra demostra		. 0 60=	
1,2,2 - Tetracloroetano Metodo di analisi di riferimento: UNI EN ISO 15680:2005	μg/l	< 0,005	0,05
metodo di amaisi di Meninerito. Oni En 150 15000.2005			
limite di quantificazione: 0,005		incertezza:	

Ordine dei CHIMICI e dei FISICI della Prov. di Treviso n° A093 Codice Fiscale GSTDRN42R12H823B P.IVA 01627660267 Via Pirzio Biroli n.1 - 31046 ODERZO (TV)

Triggiano, 23 ottobre 2020

Certificato n° 20LA33913

CERTIFICATO ANALISI

- Tribromometano	μg/l	< 0,01	0,3
Metodo di analisi di riferimento: UNI EN ISO 15680:2005		ļ.	
limite di quantificazione: 0,01		incertezza:	
,2 - Dibromoetano	μg/l	< 0,001	0,001
Metodo di analisi di riferimento: UNI EN ISO 15680:2005			
limite di quantificazione: 0,001		incertezza:	
Dibromoclorometano	μg/l	< 0,01	0,13
Metodo di analisi di riferimento: UNI EN ISO 15680:2005		•	
limite di quantificazione: 0,01		incertezza:	
Bromodiclorometano	μg/l	< 0,01	0,17
Metodo di analisi di riferimento: UNI EN ISO 15680:2005		l l	I
limite di quantificazione: 0,01		incertezza:	
Nitrobenzene	//	< 0.2	3.5
Metodo di analisi di riferimento: EPA 8260 rev 3 2006	μg/l	< 0,3	3,5
limite di quantificazione: 0,3		incertezza:	
,2 - Dinitrobenzene	μg/l	< 0,3	15
Metodo di analisi di riferimento: EPA 8260 rev 3 2006		-	•
limite di quantificazione: 0,3		incertezza:	
,3- dinitrobenzene	μg/l	< 0,3	3,7
Metodo di analisi di riferimento: EPA 8260 rev 3 2006			
limite di quantificazione: 0,3		incertezza:	
			1
Cloronitrobenzeni (ognumo) Metodo di analisi di riferimento: EPA 8260 rev 3 2006	μg/l	< 0,05	0,5
limite di quantificazione: 0,05		incertezza:	
Monoclorobenzene	μg/l	< 0,1	40
Metodo di analisi di riferimento: UNI EN ISO 15680:2005		•	
limite di quantificazione: 0,1		incertezza:	
,2 - diclorobenzene	ug/l	< 0,1	270
Metodo di analisi di riferimento: UNI EN ISO 15680:2005	μg/l	~ U, I	
limite di quantificazione: 0,1		incertezza:	
		T	
,4 - diclorobenzene	μg/l	< 0,05	0,5
Metodo di analisi di riferimento: UNI EN ISO 15680:2005			
limite di quantificazione: 0,05		incertezza:	

Ordine dei CHIMICI e dei FISICI della Prov. di Treviso n° A093 Codice Fiscale GSTDRN42R12H823B P.IVA 01627660267 Via Pirzio Biroli n.1 - 31046 ODERZO (TV)

Triggiano, 23 ottobre 2020

Certificato n° 20LA33913

CERTIFICATO ANALISI

,2,4 - Triclorobenzene		μg/l	< 0,1	190
Metodo di analisi di riferimento: UNI EN ISO 1568	0:2005			
	limite di quantificazione: 0,1		incertezza:	
2.4.5. Totaloushamana			104	10
2,4,5 - Tetraclorobenzene Metodo di analisi di riferimento: EPA 8270E		µg/l	< 0,1	1,8
Motodo di dilanoi di monmonto. El 71 02102				
	limite di quantificazione: 0,1		incertezza:	
entaclorobenzene		μg/l	< 0,5	5
Metodo di analisi di riferimento: EPA 8270E				
	limite di quantificazione: 0,5		incertezza:	
saclorobenzene (HCB)		μg/l	< 0,001	0,01
Metodo di analisi di riferimento: EPA 8270E			l	
	limite di quantificazione: 0,001		incertezza:	
- clorofenolo		μg/l	<1	180
Metodo di analisi di riferimento: EPA 8270E		F9:		
	limite di quantificazione: 1		incertezza:	
,4 - Diclorofenolo		μg/l	< 1	110
Metodo di analisi di riferimento: EPA 8270E			-	'
	limite di quantificazione: 1		incertezza:	
,4,6 - Triclorofenolo		μg/l	< 0,5	5
Metodo di analisi di riferimento: EPA 8270E			-	
	limite di quantificazione: 0,5		incertezza:	
entaclorofenolo		μg/l	< 0,05	0,5
Metodo di analisi di riferimento: EPA 8270E		1-5.	1 0,00	
	limite di quantificazione: 0,05		incertezza:	
lacior		μg/l	< 0,01	0,1
Metodo di analisi di riferimento: EPA 8270E		рул	< 0,01	0,1
	limite di quantificazione: 0,01		incertezza:	
ldrin		P	4 0 000	0.00
Metodo di analisi di riferimento: EPA 8270E		μg/l	< 0,003	0,03
	limite di monette mi co coco			
	limite di quantificazione: 0,003		incertezza:	
trazina		μg/l	< 0,01	0,3
Metodo di analisi di riferimento: EPA 8270E				
	limite di quantificazione: 0,01		incertezza:	

Ordine dei CHIMICI e dei FISICI della Prov. di Treviso n° A093 Codice Fiscale GSTDRN42R12H823B P.IVA 01627660267 Via Pirzio Biroli n.1 - 31046 ODERZO (TV)

Triggiano, 23 ottobre 2020

Certificato n° 20LA33913

CERTIFICATO ANALISI

Alfa-esacloroesano	μg/l	< 0,01	0,1
Metodo di analisi di riferimento: EPA 8270E			
limite di quantificazione: 0,01		incertezza:	
Beta-esacloroesano	μg/l	< 0,01	0,1
Metodo di analisi di riferimento: EPA 8270E	13	3,31	
limite di quantificazione: 0,01		incertezza:	
N (15-d)	,	. 0.04	1
Gamma-esacloroesano (lindano) Metodo di analisi di riferimento: EPA 8270E	μg/l	< 0,01	0,1
motodo di diferimonio. El 7702102			
limite di quantificazione: 0,01		incertezza:	
Clordano	μg/l	< 0,01	0,1
Metodo di analisi di riferimento: EPA 8270E		ļ	
limite di quantificazione: 0,01		incertezza:	
200 007 005			1
DDD, DDT, DDE Metodo di analisi di riferimento: EPA 8270E	μg/l	< 0,01	0,1
limite di quantificazione: 0,01		incertezza:	
Dieldrin	μg/l	< 0,003	0,03
Metodo di analisi di riferimento: EPA 8270E		•	1
limite di quantificazione: 0,003		incertezza:	
Endrin	 μg/l	< 0,01	0,1
Metodo di analisi di riferimento: EPA 8270E		-,	<u> </u>
limite di quantificazione: 0,01		incertezza:	
	/ -l l		
Sommatoria fitofarmaci (punto 86, tabella 2, allegato 5, titolo \ (52/2006)	μg/l	< 0,05	0,5
Metodo di analisi di riferimento: EPA 8270E		!	'
limite di quantificazione: 0,05		incertezza:	
Clorpirifos	μg/l	< 0,1	
Metodo di analisi di riferimento: EPA 8270E		70,1	
limite di quantificazione: 0,1		incertezza:	
iiiiiie di quantinoazione. 0,1		mocrezza.	
Dimetoato	μg/l	< 0,1	
Metodo di analisi di riferimento: EPA 8270E			
limite di quantificazione: 0,1		incertezza:	
Deltametrina	μg/l	< 0,1	
Metodo di analisi di riferimento: EPA 8270E	L-3/,	• •, •	
limito di quantificazione: 0.1		incertezza:	
limite di quantificazione: 0,1		incertezza:	

Ordine dei CHIMICI e dei FISICI della Prov. di Treviso n° A093 Codice Fiscale GSTDRN42R12H823B P.IVA 01627660267 Via Pirzio Biroli n.1 - 31046 ODERZO (TV)

Triggiano, 23 ottobre 2020

Certificato nº 20LA33913

CERTIFICATO ANALISI

(valido a tutti gli effetti come da D. L. n° 842/28)

Fention		μg/l	< 0,1	
Metodo di analisi di riferimento: EPA 8270E			•	
	limite di quantificazione: 0,1		incertezza:	
Oxifluorfen		μg/l	< 0,1	
Metodo di analisi di riferimento: EPA 8270E			3,5	I
	limite di quantificazione: 0,1		incertezza:	
Paration		μg/l	< 0,1	
Metodo di analisi di riferimento: EPA 8270E				
	limite di quantificazione: 0,1		incertezza:	
Simazina		μg/l	< 0,1	
Metodo di analisi di riferimento: EPA 8270E			•	·
	limite di quantificazione: 0,1		incertezza:	
Sommatoria pesticidi fosforati		μg/l	< 0,1	
Metodo di analisi di riferimento: EPA 8270E			'	-
	limite di quantificazione: 0,1		incertezza:	
PCB		μg/l	< 0,001	0,01
Metodo di analisi di riferimento: APAT CNR IRSA	5110 Man 29 2003	<u> </u>		
	limite di quantificazione: 0,001		incertezza:	

Note:

La determinazione dei metalli è stata effettuata sul campione filtrato e acidificato. Nel calcolo della concentrazione degli elementi in traccia non viene considerato il recupero determinato dal laboratorio il quale risulta essere compreso tra 90 e 110 %.

L'incertezza di misura riportata nel presente certificato di analisi è espressa come incertezza estesa con un fattore di copertura (k) pari a 2 corrispondente a un livello di fiducia di circa 95%.

I risultati delle analisi si riferiscono ESCLUSIVAMENTE al campione esaminato; si declina ogni responsabilità nei casi di utilizzo del presente atto in difformità agli usi consentiti dalla Legge. Le analisi da eseguire sono state commissionate dal committente e dunque si declina ogni responsabilità in merito alla completezza delle informazioni.

Le analisi sono state eseguite dalla CHIMIE Srl e i LABORATORI ANALISI CHIMICHE DOTT. ADRIANO GIUSTO - SERVIZI AMBIENTE S.R.L., accreditato al n. 0128L, del gruppo LIFEANALYTICS.

Il chimico

Laboratorio Analisi Chimiche Dott. A. Giusto Servizi Ambiente S.r.I. - Chimie S.r.I. Gruppo LIFEANALYTICS

Tel. 0804621899 – info.chimie@lifeanalytics.it Laboratori Conformi alla norma UNI CEI EN ISO/IEC 17025:2018 Laboratori Certificati UNI EN ISO 9001:2015 e UNI EN ISO 14001:2015

Ordine dei CHIMICI e dei FISICI della Prov. di Treviso n° A093 Codice Fiscale GSTDRN42R12H823B P.IVA 01627660267 Via Pirzio Biroli n.1 - 31046 ODERZO (TV)

Triggiano, 23 ottobre 2020

Certificato n° 20LA33917

CERTIFICATO ANALISI

(valido a tutti gli effetti come da D. L. n° 842/28)

COMMITTENTE: FORMICA AMBIENTE srl - Via Groenlandia 47 - Roma

ETICHETTA: Campione di acqua di falda prelevato dallo scarico **TAF** della discarica per rifiuti non pericolosi sita in c.da Formica (BR)

Data ricezione campione: 24/09/20

Il campione è stato prelevato dal tecnico dello studio CHIMIE Srl, P. Chim. G. Cipriano come da verbale nº 74/09

RISULTATI

PARAMETRO	unità di misura	valore determinato	D. Lgs. 152/06 Tab. 2 allegato 5 alla parte IV Titolo V
рН		7,19	
Metodo di analisi di riferimento: UNI EN ISO 10523:2012			
limite di quantificazione: > 1 e < 13		incertezza: ±	0,12
Temperatura	°C	19,9	
Metodo di analisi di riferimento: APAT CNR IRSA 2100 Man 29 2003			•
limite di quantificazione: 1		incertezza: ±	0,2
Ossigeno disciolto	mg/l	6,09	
Metodo di analisi di riferimento: Strumentale - Sensore di Ossigeno Disciolto a luminescenza LDO			
limite di quantificazione: 0,5		incertezza: ±	0,61
Potenziale Redox	mV	124,1	
Metodo di analisi di riferimento: Strumentale - Sensore ORP			
limite di quantificazione: 10		incertezza: ±	12,4
Conducibilità	uS/cm a 20 °C	3600	
Metodo di analisi di riferimento: UNI EN 27888:1995			·
limite di quantificazione: 10		incertezza: ±	72
Ossidabilità O2	mg/l	0,80	
Metodo di analisi di riferimento: metodo Tritrimetrico (secondo Kubel), ISTISAN 07/31			•
limite di quantificazione: 0,5		incertezza: ±	0,06
Domanda biochimica di ossigeno (BOD5) a 20°C senza nitrificazione	mgO ₂ /I	< 0,5	
Metodo di analisi di riferimento: APAT CNR IRSA 5120 Man 29 2003			'
limite di quantificazione: 0,5		incertezza:	
Carbonio organico totale (TOC)	mg/l	0,30	
Metodo di analisi di riferimento: APAT CNR IRSA 5040 Man 29 2003			
limite di quantificazione: 0,1		incertezza: ±	0,06

Ordine dei CHIMICI e dei FISICI della Prov. di Treviso n° A093 Codice Fiscale GSTDRN42R12H823B P.IVA 01627660267 Via Pirzio Biroli n.1 - 31046 ODERZO (TV)

Triggiano, 23 ottobre 2020

Certificato n° 20LA33917

CERTIFICATO ANALISI

Durezza totale	°F	63	
Metodo di analisi di riferimento: APAT CNR IRSA 2040 A Man 29 2003			ļ.
limite di quantificazione: 5		incertezza: ± 1	
			,
ianuri	μg/l	< 1	50
Metodo di analisi di riferimento: APAT CNR IRSA 4070 Man 29 2003			
limite di quantificazione: 1		incertezza:	
luoruri	mg/l	0,10	1,5
Metodo di analisi di riferimento: UNI EN ISO 10304-1:2009	Ilig/i	0,10	1,5
limite di quantificazione: 0,1		incertezza:	
litriti come NO2	μg/l	< 50	500
Metodo di analisi di riferimento: UNI EN ISO 10304-1:2009			!
limite di quantificazione: 50		incertezza:	
olfati	mg/l	141	250
Metodo di analisi di riferimento: UNI EN ISO 10304-1:2009			I
limite di quantificazione: 0,1		incertezza: ± 14	
Cloruri	mg/l	982	
Metodo di analisi di riferimento: UNI EN ISO 10304-1:2009			
limite di quantificazione: 0,1		incertezza: ± 98	
innic di quantineazione. 0, 1		meenezza. 1 00	
litrati come NO3	mg/l	12	
Metodo di analisi di riferimento: UNI EN ISO 10304-1:2009		•	•
limite di quantificazione: 0,1		incertezza: ± 1	
•			
mmoniaca come NH4	mg/l	< 0,05	
Metodo di analisi di riferimento: UNICHIM 2363:2009			
limite di quantificazione: 0,05		incertezza:	
Illuminio	μg/l	< 1	200
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016			
limite di quantificazione: 1		incertezza:	
ntimonio		< 0.2	5
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016	µg/l	< 0,3	5
limite di quantificazione: 0,3		incertezza:	
rgente		< 1	10
Argento Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016	µg/l	81	10
limite di quantificazione: 1		incertezza:	

Ordine dei CHIMICI e dei FISICI della Prov. di Treviso n° A093 Codice Fiscale GSTDRN42R12H823B P.IVA 01627660267 Via Pirzio Biroli n.1 - 31046 ODERZO (TV)

Triggiano, 23 ottobre 2020

Certificato n° 20LA33917

CERTIFICATO ANALISI

arsenico	μg/l	< 1	10
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016			
limite di quantificazione: 1		incertezza:	
Bario		20	
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016	μg/l	30	
limite di quantificazione: 1		incertezza: ± 3	
Berillio	μg/l	< 0,3	4
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016		·	l
limite di quantificazione: 0,3		incertezza:	
mino di quantinoaziono. 0,0		moortozza.	
Boro	μg/l	189	1000
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016			
limite di quantificazione: 1		incertezza: ± 19	
No division			
Cadmio Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016	μg/l	< 0,3	5
Metodo di analisi di filerimento. ONI EN 130-17294-2.2010			
limite di quantificazione: 0,3		incertezza:	
Calcio	mg/l	127	
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016			
limite di muzulfferezione. 0.004		:t	
limite di quantificazione: 0,001		incertezza: ± 13	
Cobalto	μg/l	< 1	50
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016		•	·
limite di quantificazione: 1		incertezza:	
			Ī
cromo totale	μg/l	< 1	50
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016			
limite di quantificazione: 1		incertezza:	
Cromo esavalente	μg/l	< 0,5	5
Metodo di analisi di riferimento: APAT CNR IRSA n° 3150 Man 29 2003	P9/1	- 0,0	
limite di quantificazione: 0,5		incertezza:	
erro	μg/l	< 1	200
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016		1	
limite di quantificazione: 1		incertezza:	
Magnesio Magnesio	mg/l	76	
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016			
limite di quantificazione: 0,001		incertezza: ± 8	

Ordine dei CHIMICI e dei FISICI della Prov. di Treviso n° A093 Codice Fiscale GSTDRN42R12H823B P.IVA 01627660267 Via Pirzio Biroli n.1 - 31046 ODERZO (TV)

Triggiano, 23 ottobre 2020

Certificato n° 20LA33917

CERTIFICATO ANALISI

				1
langanese		μg/l	< 1	50
Metodo di analisi di riferimento: UNI EN ISO 17	294-2:2016			
	limite di quantificazione: 1		incertezza:	
lercurio		μg/l	< 0,1	1
Metodo di analisi di riferimento: UNI EN ISO 17	294-2:2016			
	limite di quantificazione: 0,1		incertezza:	
				1
lolibdeno Metodo di analisi di riferimento: UNI EN ISO 17	7004 0.0046	μg/l	2,3	
Metodo di analisi di riferimento: UNI EN ISO 17	294-2:2016			
	limite di quantificazione: 1		incertezza: ± 0,2	
P. L. P.				1
lichelio Metodo di analisi di riferimento: UNI EN ISO 17	2204 2:2016	μg/l	<1	20
Metodo di arialisi di Hierimento: UNI EN ISO 17	23T2.2010			
	limite di quantificazione: 1		incertezza:	
riombo			< 1	40
Metodo di analisi di riferimento: UNI EN ISO 17	·294_2·2016	μg/l	< 1	10
Weldad a analisi di filetimento. GW EN 130 17	292.2010			
	limite di quantificazione: 1		incertezza:	
Potassio		mall	20	
Metodo di analisi di riferimento: UNI EN ISO 17	7294-2:2016	mg/l	20	
	limite di quantificazione: 0,001		incertezza: ± 2	
Rame		μg/l	< 1	1000
Metodo di analisi di riferimento: UNI EN ISO 17	294-2:2016	1-9.		
	limite di quantificazione: 1		incertezza:	
selenio		μg/l	< 0,3	10
Metodo di analisi di riferimento: UNI EN ISO 17	294-2:2016	10	-,-	
	limite di quantificazione: 0,3		incertezza:	
odio		mg/l	444	
Metodo di analisi di riferimento: UNI EN ISO 17	294-2:2016			I
	F 4 F 7 7 7 0 004			
	limite di quantificazione: 0,001		incertezza: ± 44	
tagno		μg/l	< 1	
Metodo di analisi di riferimento: UNI EN ISO 17	294-2:2016			1
	limite di quantificazione: 1		incortozza	
	limite di quantificazione: 1		incertezza:	
allio		μg/l	< 0,2	2
Metodo di analisi di riferimento: UNI EN ISO 17	294-2:2016		·	I
	F 4 F - 45 - 20			
	limite di quantificazione: 0,2		incertezza:	

Ordine dei CHIMICI e dei FISICI della Prov. di Treviso n° A093 Codice Fiscale GSTDRN42R12H823B P.IVA 01627660267 Via Pirzio Biroli n.1 - 31046 ODERZO (TV)

Triggiano, 23 ottobre 2020

Certificato n° 20LA33917

CERTIFICATO ANALISI

Tellurio		μg/l	< 1	
Metodo di analisi di riferimento: UNI EN ISO 1729	04-2:2016			
	limite di quantificazione: 1		incertezza:	
Vanadio Metodo di analisi di riferimento: UNI EN ISO 1729	04.2:2016	μg/l	3,5	
Metodo di ariansi di rilerimento. UNI EN ISO 1728				
	limite di quantificazione: 1		incertezza: ± 0,4	
Zinco		μg/l	9,2	3000
Metodo di analisi di riferimento: UNI EN ISO 1729	04-2:2016			<u> </u>
	limite di quantificazione: 1		incertezza: ± 0,9	
	innice di quantinoazione.		incortozza. 1 0,0	
Benzene		μg/l	< 0,1	1
Metodo di analisi di riferimento: UNI EN ISO 1568	0:2005			
	limite di quantificazione: 0,1		incertezza:	
Etilbenzene			< 0.4	50
Metodo di analisi di riferimento: UNI EN ISO 1568	0:2005	μg/l	< 0,1	50
	limite di quantificazione: 0,1		incertezza:	
Stirene		μg/l	< 0,1	25
Metodo di analisi di riferimento: UNI EN ISO 1568	0:2005			
	limite di quantificazione: 0,1		incertezza:	
Toluene		μg/l	< 0,1	15
Metodo di analisi di riferimento: UNI EN ISO 1568	0:2005			
	limite di quantificazione: 0,1		incertezza:	
o-Xilene		μg/l	< 0,1	10
Metodo di analisi di riferimento: UNI EN ISO 1568	0:2005	μg/1	\(\text{0,1}\)	10
	limite di quantificazione: 0,1		incertezza:	
Benzo(a)antracene		μg/l	< 0,01	0,1
Metodo di analisi di riferimento: EPA 8270E				
	limite di quantificazione: 0,01		incertezza:	
			T	T
Benzo(a)pirene		μg/l	< 0,001	0,01
Metodo di analisi di riferimento: EPA 8270E				
	limite di quantificazione: 0,001		incertezza:	
Benzo(b)fluorantene		μg/l	< 0,01	0,1
Metodo di analisi di riferimento: EPA 8270E			- 0,01	
	limite di quantificazione: 0,01		incertezza:	

Ordine dei CHIMICI e dei FISICI della Prov. di Treviso n° A093 Codice Fiscale GSTDRN42R12H823B P.IVA 01627660267 Via Pirzio Biroli n.1 - 31046 ODERZO (TV)

Triggiano, 23 ottobre 2020

Certificato n° 20LA33917

CERTIFICATO ANALISI

Benzo(k)fluorantene		μg/l	< 0,005	0,05
Metodo di analisi di riferimento: EPA 8270E				I
limite di qu	antificazione: 0,005		incertezza:	
enzo(g,h,i)perilene		μg/l	< 0,001	0,01
Metodo di analisi di riferimento: EPA 8270E		ру/і	< 0,001	0,01
limite di qu	antificazione: 0,001		incertezza:	
risene		μg/l	< 0,01	5
Metodo di analisi di riferimento: EPA 8270E		рул	< 0,01	3
limite di au	uantificazione: 0,01		incertezza:	
milic di qu	antinoazione. 0,01		moortozza.	
Dibenzo(a,h)antracene		μg/l	< 0,001	0,01
Metodo di analisi di riferimento: EPA 8270E				
limite di qu	antificazione: 0,001		incertezza:	
ndeno(1,2,3-c,d)pirene		μg/l	< 0,01	0,1
Metodo di analisi di riferimento: EPA 8270E			5,5.1	
limite di qu	antificazione: 0,01		incertezza:	
Pirene		μg/l	< 0,01	50
Metodo di analisi di riferimento: EPA 8270E			'	!
limite di qu	nantificazione: 0,01		incertezza:	
ommatoria IPA (punto 38, tabella 2, allegato 5, ti	itolo V d. Lgs 152/2006)	μg/l	< 0,01	0,1
Metodo di analisi di riferimento: EPA 8270E				
limite di qu	antificazione: 0,01		incertezza:	
Clorometano			104	4.5
Metodo di analisi di riferimento: UNI EN ISO 15680:2005		μg/l	< 0,1	1,5
	15			
iimite ai qu	antificazione: 0,1		incertezza:	
cloroformio (triclorometano)		μg/l	< 0,01	0,15
Metodo di analisi di riferimento: UNI EN ISO 15680:2005				
limite di qu	antificazione: 0,01		incertezza:	
Cloruro di vinile		μg/l	< 0,05	0,5
Metodo di analisi di riferimento: UNI EN ISO 15680:2005			• • •	
limite di qu	nantificazione: 0,05		incertezza:	
,2 - Dicloroetano		uall	< 0,1	3
Metodo di analisi di riferimento: UNI EN ISO 15680:2005		μg/l	< 0,1	
	contifications, 0.1		incorto	
limite ai qu	antificazione: 0,1		incertezza:	

Ordine dei CHIMICI e dei FISICI della Prov. di Treviso n° A093 Codice Fiscale GSTDRN42R12H823B P.IVA 01627660267 Via Pirzio Biroli n.1 - 31046 ODERZO (TV)

Triggiano, 23 ottobre 2020

Certificato n° 20LA33917

CERTIFICATO ANALISI

1,1 - Dicloroetilene	μg/l	< 0,005	0,05
Metodo di analisi di riferimento: UNI EN ISO 15680:2005	μ9/1	- 0,000	0,03
limite di quantificazione: 0,005		incertezza:	
ricloroetilene	μg/l	< 0,1	1,5
Metodo di analisi di riferimento: UNI EN ISO 15680:2005			
limite di quantificazione: 0,1		incertezza:	
etracloroetilene	μg/l	< 0,1	1,1
Metodo di analisi di riferimento: UNI EN ISO 15680:2005			
limite di quantificazione: 0,1		incertezza:	
acalarahutadiana (UCDD)	/!	4 0 04	0.45
saclorobutadiene (HCBD) Metodo di analisi di riferimento: UNI EN ISO 15680:2005	μg/l	< 0,01	0,15
limite di quantificazione: 0,01		incertezza:	
ommatoria organoalogenati (punto 47, tabella 2, allegato 5, titolo V d. Lgs			
52/2006)	μg/l	< 1	10
Metodo di analisi di riferimento: UNI EN ISO 15680:2005			
limite di quantificazione: 1		incertezza:	
			ı
1 - Dicloroetano	μg/l	< 0,1	810
Metodo di analisi di riferimento: UNI EN ISO 15680:2005			
limite di quantificazione: 0,1		incertezza:	
,2 - Dicloroetilene	μg/l	< 0,1	60
Metodo di analisi di riferimento: UNI EN ISO 15680:2005	ру/і ————————————————————————————————————	\ 0,1	00
limite di quantificazione: 0,1		incertezza:	
,2 - Dicloropropano	μg/l	< 0,01	0,15
Metodo di analisi di riferimento: UNI EN ISO 15680:2005		,	
limite di quantificazione: 0,01		incertezza:	
iii nie di quantinoazione. 0,01		incertezza.	
,1,2 - Tricloroetano	μg/l	< 0,01	0,2
Metodo di analisi di riferimento: UNI EN ISO 15680:2005		•	·
limite di quantificazione: 0,01		incertezza:	
		1	I
,2,3 - Tricloropropano	μg/l	< 0,001	0,001
Metodo di analisi di riferimento: UNI EN ISO 15680:2005			
limite di quantificazione: 0,001		incertezza:	
4.0.0 Tetra demostra		. 0 60=	
1,2,2 - Tetracloroetano Metodo di analisi di riferimento: UNI EN ISO 15680:2005	μg/l	< 0,005	0,05
metodo di amaisi di Meninerito. Oni En 150 15000.2005			
limite di quantificazione: 0,005		incertezza:	

Ordine dei CHIMICI e dei FISICI della Prov. di Treviso n° A093 Codice Fiscale GSTDRN42R12H823B P.IVA 01627660267 Via Pirzio Biroli n.1 - 31046 ODERZO (TV)

Triggiano, 23 ottobre 2020

Certificato n° 20LA33917

CERTIFICATO ANALISI

- Tribromometano	μg/l	< 0,01	0,3
Metodo di analisi di riferimento: UNI EN ISO 15680:2005		ļ.	
limite di quantificazione: 0,01		incertezza:	
,2 - Dibromoetano	μg/l	< 0,001	0,001
Metodo di analisi di riferimento: UNI EN ISO 15680:2005			
limite di quantificazione: 0,001		incertezza:	
Dibromoclorometano	μg/l	< 0,01	0,13
Metodo di analisi di riferimento: UNI EN ISO 15680:2005			
limite di quantificazione: 0,01		incertezza:	
Bromodiclorometano	μg/l	< 0,01	0,17
Metodo di analisi di riferimento: UNI EN ISO 15680:2005		l l	I
limite di quantificazione: 0,01		incertezza:	
Nitrobenzene	//	< 0.2	3.5
Metodo di analisi di riferimento: EPA 8260 rev 3 2006	μg/l	< 0,3	3,5
limite di quantificazione: 0,3		incertezza:	
,2 - Dinitrobenzene	μg/l	< 0,3	15
Metodo di analisi di riferimento: EPA 8260 rev 3 2006		-	•
limite di quantificazione: 0,3		incertezza:	
,3- dinitrobenzene	μg/l	< 0,3	3,7
Metodo di analisi di riferimento: EPA 8260 rev 3 2006			
limite di quantificazione: 0,3		incertezza:	
			1
Cloronitrobenzeni (ognumo) Metodo di analisi di riferimento: EPA 8260 rev 3 2006	μg/l	< 0,05	0,5
limite di quantificazione: 0,05		incertezza:	
Monoclorobenzene	μg/l	< 0,1	40
Metodo di analisi di riferimento: UNI EN ISO 15680:2005		•	
limite di quantificazione: 0,1		incertezza:	
,2 - diclorobenzene	ug/l	< 0,1	270
Metodo di analisi di riferimento: UNI EN ISO 15680:2005	μg/l	~ U, I	
limite di quantificazione: 0,1		incertezza:	
		T	
,4 - diclorobenzene	μg/l	< 0,05	0,5
Metodo di analisi di riferimento: UNI EN ISO 15680:2005			
limite di quantificazione: 0,05		incertezza:	

Ordine dei CHIMICI e dei FISICI della Prov. di Treviso n° A093 Codice Fiscale GSTDRN42R12H823B P.IVA 01627660267 Via Pirzio Biroli n.1 - 31046 ODERZO (TV)

Triggiano, 23 ottobre 2020

Certificato n° 20LA33917

CERTIFICATO ANALISI

,2,4 - Triclorobenzene		μg/l	< 0,1	190
Metodo di analisi di riferimento: UNI EN ISO 1568	0:2005			
	limite di quantificazione: 0,1		incertezza:	
2.4.5. Totaloushamana			104	10
2,4,5 - Tetraclorobenzene Metodo di analisi di riferimento: EPA 8270E		µg/l	< 0,1	1,8
Motodo di dilanoi di monmonto. El 71 02102				
	limite di quantificazione: 0,1		incertezza:	
entaclorobenzene		μg/l	< 0,5	5
Metodo di analisi di riferimento: EPA 8270E				
	limite di quantificazione: 0,5		incertezza:	
saclorobenzene (HCB)		μg/l	< 0,001	0,01
Metodo di analisi di riferimento: EPA 8270E			l	
	limite di quantificazione: 0,001		incertezza:	
- clorofenolo		μg/l	<1	180
Metodo di analisi di riferimento: EPA 8270E		F9:		
	limite di quantificazione: 1		incertezza:	
2,4 - Diclorofenolo		μg/l	< 1	110
Metodo di analisi di riferimento: EPA 8270E			-	'
	limite di quantificazione: 1		incertezza:	
,4,6 - Triclorofenolo		μg/l	< 0,5	5
Metodo di analisi di riferimento: EPA 8270E			-	
	limite di quantificazione: 0,5		incertezza:	
entaclorofenolo		μg/l	< 0,05	0,5
Metodo di analisi di riferimento: EPA 8270E		1-5.	1 0,00	
	limite di quantificazione: 0,05		incertezza:	
lacior		μg/l	< 0,01	0,1
Metodo di analisi di riferimento: EPA 8270E		рул	< 0,01	0,1
	limite di quantificazione: 0,01		incertezza:	
ldrin		P	4 0 000	0.00
Metodo di analisi di riferimento: EPA 8270E		μg/l	< 0,003	0,03
	limite di monette mi co coco			
	limite di quantificazione: 0,003		incertezza:	
trazina		μg/l	< 0,01	0,3
Metodo di analisi di riferimento: EPA 8270E				
	limite di quantificazione: 0,01		incertezza:	

Ordine dei CHIMICI e dei FISICI della Prov. di Treviso n° A093 Codice Fiscale GSTDRN42R12H823B P.IVA 01627660267 Via Pirzio Biroli n.1 - 31046 ODERZO (TV)

Triggiano, 23 ottobre 2020

Certificato n° 20LA33917

CERTIFICATO ANALISI

Alfa-esacloroesano	μg/l	< 0,01	0,1
Metodo di analisi di riferimento: EPA 8270E			
limite di quantificazione: 0,01		incertezza:	
Beta-esacloroesano	μg/l	< 0,01	0,1
Metodo di analisi di riferimento: EPA 8270E	13	3,31	
limite di quantificazione: 0,01		incertezza:	
N (15-d)	,	. 0.04	1
Gamma-esacloroesano (lindano) Metodo di analisi di riferimento: EPA 8270E	μg/l	< 0,01	0,1
motodo di diferimonio. El 7702102			
limite di quantificazione: 0,01		incertezza:	
Clordano	μg/l	< 0,01	0,1
Metodo di analisi di riferimento: EPA 8270E		ļ	
limite di quantificazione: 0,01		incertezza:	
200 007 005			1
DDD, DDT, DDE Metodo di analisi di riferimento: EPA 8270E	μg/l	< 0,01	0,1
limite di quantificazione: 0,01		incertezza:	
Dieldrin	μg/l	< 0,003	0,03
Metodo di analisi di riferimento: EPA 8270E		•	1
limite di quantificazione: 0,003		incertezza:	
Endrin	 μg/l	< 0,01	0,1
Metodo di analisi di riferimento: EPA 8270E		-,	<u> </u>
limite di quantificazione: 0,01		incertezza:	
	/ -l l		
Sommatoria fitofarmaci (punto 86, tabella 2, allegato 5, titolo \ (52/2006)	μg/l	< 0,05	0,5
Metodo di analisi di riferimento: EPA 8270E		!	'
limite di quantificazione: 0,05		incertezza:	
Clorpirifos	μg/l	< 0,1	
Metodo di analisi di riferimento: EPA 8270E		70,1	
limite di quantificazione: 0,1		incertezza:	
iiiiiie di quantinoazione. 0,1		mocrezza.	
Dimetoato	μg/l	< 0,1	
Metodo di analisi di riferimento: EPA 8270E			
limite di quantificazione: 0,1		incertezza:	
Deltametrina	μg/l	< 0,1	
Metodo di analisi di riferimento: EPA 8270E	L-3/,	• •, •	
limito di quantificazione: 0.1		incertezza:	
limite di quantificazione: 0,1		incertezza:	

Ordine dei CHIMICI e dei FISICI della Prov. di Treviso n° A093 Codice Fiscale GSTDRN42R12H823B P.IVA 01627660267 Via Pirzio Biroli n.1 - 31046 ODERZO (TV)

Triggiano, 23 ottobre 2020

Certificato nº 20LA33917

CERTIFICATO ANALISI

(valido a tutti gli effetti come da D. L. n° 842/28)

Fention		μg/l	< 0,1		
Metodo di analisi di riferimento: EPA 8270E				•	
	limite di quantificazione: 0,1		incertezza:		
Oxifluorfen		μg/l	< 0,1		
Metodo di analisi di riferimento: EPA 8270E			,	•	
	limite di quantificazione: 0,1		incertezza:		
Paration		μg/l	< 0,1		
Metodo di analisi di riferimento: EPA 8270E					
	limite di quantificazione: 0,1		incertezza:		
Simazina		μg/l	< 0,1		
Metodo di analisi di riferimento: EPA 8270E			1	I	
	limite di quantificazione: 0,1		incertezza:		
Sommatoria pesticidi fosforati		μg/l	< 0,1		
Metodo di analisi di riferimento: EPA 8270E					
	limite di quantificazione: 0,1		incertezza:		
PCB		μg/l	< 0,001	0,0)1
Metodo di analisi di riferimento: APAT CNR IRSA	5110 Man 29 2003		· ·		
	limite di quantificazione: 0.001		incertezza:		

Note:

La determinazione dei metalli è stata effettuata sul campione filtrato e acidificato. Nel calcolo della concentrazione degli elementi in traccia non viene considerato il recupero determinato dal laboratorio il quale risulta essere compreso tra 90 e 110 %.

L'incertezza di misura riportata nel presente certificato di analisi è espressa come incertezza estesa con un fattore di copertura (k) pari a 2 corrispondente a un livello di fiducia di circa 95%.

I risultati delle analisi si riferiscono ESCLUSIVAMENTE al campione esaminato; si declina ogni responsabilità nei casi di utilizzo del presente atto in difformità agli usi consentiti dalla Legge. Le analisi da eseguire sono state commissionate dal committente e dunque si declina ogni responsabilità in merito alla completezza delle informazioni.

Le analisi sono state eseguite dalla CHIMIE Srl e i LABORATORI ANALISI CHIMICHE DOTT. ADRIANO GIUSTO - SERVIZI AMBIENTE S.R.L., accreditato al n. 0128L, del gruppo LIFEANALYTICS.

Il chimico

Laboratorio Analisi Chimiche Dott. A. Giusto Servizi Ambiente S.r.I. - Chimie S.r.I. Gruppo LIFEANALYTICS

Tel. 0804621899 – info.chimie@lifeanalytics.it Laboratori Conformi alla norma UNI CEI EN ISO/IEC 17025:2018 Laboratori Certificati UNI EN ISO 9001:2015 e UNI EN ISO 14001:2015

Ordine dei CHIMICI e dei FISICI della Prov. di Treviso n° A093 Codice Fiscale GSTDRN42R12H823B P.IVA 01627660267 Via Pirzio Biroli n.1 - 31046 ODERZO (TV)

Triggiano, 23 ottobre 2020

Certificato n° 20LA34093

CERTIFICATO ANALISI

(valido a tutti gli effetti come da D. L. n° 842/28)

COMMITTENTE: FORMICA AMBIENTE srl - Via Groenlandia 47 - Roma

ETICHETTA: Campione di acqua di falda prelevato dal pozzo n° **5A** della discarica per rifiuti non pericolosi sita in c.da Formica (BR)

Data ricezione campione: 28/09/20 Profondità della falda: 44,2 m

Il campione è stato prelevato dal tecnico dello studio CHIMIE Srl, P. Chim. V. Barnaba come da verbale nº 79/09

RISULTATI

PARAMETRO	unità di misura	valore determinato	D. Lgs. 152/06 Tab. 2 allegato 5 alla parte IV Titolo V
рН		7,00	
Metodo di analisi di riferimento: UNI EN ISO 10523:2012		'	<u>'</u>
limite di quantificazione: > 1 e < 13		incertezza: ±	0,12
Temperatura	°C	20,6	
Metodo di analisi di riferimento: APAT CNR IRSA 2100 Man 29 2003			•
limite di quantificazione: 1		incertezza: ±	0,2
Ossigeno disciolto	mg/l	5,48	
Metodo di analisi di riferimento: Strumentale - Sensore di Ossigeno Disciolto a luminescenza LDO			,
limite di quantificazione: 0,5		incertezza: ±	0,55
Potenziale Redox	mV	105,4	
Metodo di analisi di riferimento: Strumentale - Sensore ORP			·
limite di quantificazione: 10		incertezza: ±	10,5
Conducibilità	uS/cm a 20 °C	3940	
Metodo di analisi di riferimento: UNI EN 27888:1995			·
limite di quantificazione: 10		incertezza: ±	78,8
Ossidabilità O2	mg/l	0,70	
Metodo di analisi di riferimento: metodo Tritrimetrico (secondo Kubel), ISTISAN 07/31			
limite di quantificazione: 0,5		incertezza: ±	0,06
Domanda biochimica di ossigeno (BOD5) a 20°C senza nitrificazione	mgO ₂ /I	< 0,5	
Metodo di analisi di riferimento: APAT CNR IRSA 5120 Man 29 2003			1
limite di quantificazione: 0,5		incertezza:	
Carbonio organico totale (TOC)	mg/l	0,2	
Metodo di analisi di riferimento: APAT CNR IRSA 5040 Man 29 2003		'	•
limite di quantificazione: 0,1		incertezza: ±	0,0

Ordine dei CHIMICI e dei FISICI della Prov. di Treviso n° A093 Codice Fiscale GSTDRN42R12H823B P.IVA 01627660267 Via Pirzio Biroli n.1 - 31046 ODERZO (TV)

Triggiano, 23 ottobre 2020

Certificato n° 20LA34093

CERTIFICATO ANALISI

Durezza totale	° F	80	
Metodo di analisi di riferimento: APAT CNR IRSA 2040 A Man 29 2003			'
limite di quantificazione: 5		incertezza: ± 2	
			,
ianuri	μg/l	< 1	50
Metodo di analisi di riferimento: APAT CNR IRSA 4070 Man 29 2003			
limite di quantificazione: 1		incertezza:	
luoruri	mg/l	0,25	1,5
Metodo di analisi di riferimento: UNI EN ISO 10304-1:2009	mg/i	0,25	1,5
limite di quantificazione: 0,1		incertezza: ± 0,03	
litriti come NO2	μg/l	< 50	500
Metodo di analisi di riferimento: UNI EN ISO 10304-1:2009			
limite di quantificazione: 50		incertezza:	
iiiiiie ui quantiiicazione. 30		IIIOGI (GZZd.	
Solfati	mg/l	165	250
Metodo di analisi di riferimento: UNI EN ISO 10304-1:2009		· · · · · · · · · · · · · · · · · · ·	1
limite di quantificazione: 0,1		incertezza: ± 17	
millo di qualitificazione. Un			
Cloruri	mg/l	1040	
Metodo di analisi di riferimento: UNI EN ISO 10304-1:2009			
limite di quantificazione: 0,1		incertezza: ± 104	
litrati come NO3	mg/l	23	
Metodo di analisi di riferimento: UNI EN ISO 10304-1:2009	mg/i	23	
limite di quantificazione: 0,1		incertezza: ± 2	
Ammoniaca come NH4	mg/l	< 0,05	
Metodo di analisi di riferimento: UNICHIM 2363:2009	<u> </u>	3,00	
limite di quantificazione: 0,05)	incertezza:	
Illuminio	μg/l	3,4	200
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016		1	l
limite di quantificazione: 1		incertezza: ± 0,3	
ntimonio	μg/l	< 0,3	5
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016			
limite di quantificazione: 0,3		incertezza:	
Argento Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016	μg/l	< 1	10
metodo di anansi di meminento. Oni En 150 17294-2:2010			
limite di quantificazione: 1		incertezza:	

Ordine dei CHIMICI e dei FISICI della Prov. di Treviso n° A093 Codice Fiscale GSTDRN42R12H823B P.IVA 01627660267 Via Pirzio Biroli n.1 - 31046 ODERZO (TV)

Triggiano, 23 ottobre 2020

Certificato n° 20LA34093

CERTIFICATO ANALISI

Araaniaa		n	امر	1	40
Arsenico Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016		μg/l	< 1		10
limite di quantific	azione: 1		incertezza:		
ario		μg/l	41		
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016					
limite di quantific	azione: 1		incertezza: ± 4	 !	
Serillio		μg/l	< 0,3		4
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016					
limite di quantific	azione: 0,3		incertezza:		
		/1	262		4000
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016		μg/l	362		1000
motodo di dilanoi di motimionio.					
limite di quantific	azione: 1		incertezza: ± 3	36	
admio		μg/l	< 0,3		5
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016			-,-		
Harris di mandie					
limite di quantific	azione: 0,3		incertezza:		
alcio		mg/l	150		
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016			-	'	
limite di quantific	azione: 0,001		incertezza: ± 1	15	
obalto		μg/l	< 1		50
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016			-		
limite di quantifia	ezione: 1		incortozza		
limite di quantific	azione: 1		incertezza:		
romo totale		μg/l	1,2		50
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016			<u> </u>		
limite di quantific	azione: 1		incertezza:		
romo esavalente		μg/l	< 0,5		5
Metodo di analisi di riferimento: APAT CNR IRSA n° 3150 Man 29 2003					
limite di quantific	azione: 0,5		incertezza:		
erro		uall	0.2		200
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016		μg/l	9,3		∠00
limite di quantific	azione: 1		incertezza: ± 0),93	
lagnesio		mg/l	104		
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016					
limite di quantific	azione: 0,001		incertezza: ± 1	IU	

Ordine dei CHIMICI e dei FISICI della Prov. di Treviso n° A093 Codice Fiscale GSTDRN42R12H823B P.IVA 01627660267 Via Pirzio Biroli n.1 - 31046 ODERZO (TV)

Triggiano, 23 ottobre 2020

Certificato n° 20LA34093

CERTIFICATO ANALISI

Manganese	μg/l	< 1	50
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016	10.	-	
limite di quantificazione: 1		incertezza:	
ilitile di quantilicazione. 1		incertezza.	
Mercurio	μg/l	< 0,1	1
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016		•	·
limite di quantificazione: 0,1		incertezza:	
Molibdeno Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016	μg/l	5,5	
ivietodo di alialisi di filefilifietito. Givi Etv 130 17294-2.2010			
limite di quantificazione: 1		incertezza: ± 0,6	
Nichelio	μg/l	< 1	20
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016		- 1	
		:t	
limite di quantificazione: 1		incertezza:	
Piombo	μg/l	< 1	10
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016		l	
limite di quantificazione: 1		incertezza:	
iiiilio di quantilozzione.		moortozza.	
Potassio	mg/l	22	
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016			
limite di quantificazione: 0,001		incertezza: ± 2	
Rame		- 4	4000
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016	μg/l	< 1	1000
limite di quantificazione: 1		incertezza:	
Selenio	μg/l	< 0,3	10
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016	.,	- 7-	
limite di quantificazione: 0,3		incertezza:	
ilitilite di quantilicazione. 0,3		incertezza.	
Sodio	mg/l	636	
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016			•
limite di quantificazione: 0,001		incertezza: ± 64	
		I	
Stagno	μg/l	< 1	
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016			
limite di quantificazione: 1		incertezza:	
F-01-	-	100	
Tallio Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016	μg/l	< 0,2	2
MICLOGO di aridina di Hichinicino. Oni En 130 17294-2.2010			
limite di quantificazione: 0,2		incertezza:	

Ordine dei CHIMICI e dei FISICI della Prov. di Treviso n° A093 Codice Fiscale GSTDRN42R12H823B P.IVA 01627660267 Via Pirzio Biroli n.1 - 31046 ODERZO (TV)

Triggiano, 23 ottobre 2020

Certificato n° 20LA34093

CERTIFICATO ANALISI

ellurio		μg/l	< 1	
Metodo di analisi di riferimento: UNI EN ISO 1729	4-2:2016			
	limite di quantificazione: 1		incertezza:	
/anadio		ua/l	13,0	
Metodo di analisi di riferimento: UNI EN ISO 1729	4-2:2016	μg/l	13,0	
	limite di quantificazione: 1		incertezza: ± 1,3	
linco		μg/l	1,5	3000
Metodo di analisi di riferimento: UNI EN ISO 1729	4-2:2016		-	
	limite di quantificazione: 1		incertezza:	
		_		I .
Benzene Metodo di analisi di riferimento: UNI EN ISO 15680	0.2005	μg/l	< 0,1	1
Metodo di analisi di menmento. Givi Elviso 10000				
	limite di quantificazione: 0,1		incertezza:	
tilbenzene		μg/l	< 0,1	50
Metodo di analisi di riferimento: UNI EN ISO 15680	0:2005			
	limite di quantificazione: 0,1		incertezza:	
	minic di quantineazione. 0,1		mocrtezza.	
tirene		μg/l	< 0,1	25
Metodo di analisi di riferimento: UNI EN ISO 15680	0:2005			
	limite di quantificazione: 0,1		incertezza:	
oluene		ua/l	< 0,1	15
Metodo di analisi di riferimento: UNI EN ISO 15680	0:2005	μg/l	< 0,1	15
	limite di quantificazione: 0,1		incertezza:	
-Xilene		μg/l	< 0,1	10
Metodo di analisi di riferimento: UNI EN ISO 15680	0:2005		'	
	limite di quantificazione: 0,1		incertezza:	
Senzo(a)antracene		μg/l	< 0,01	0,1
Metodo di analisi di riferimento: EPA 8270E				
	limite di quantificazione: 0,01		incertezza:	
enzo(a)pirene		μg/l	< 0,001	0,01
Metodo di analisi di riferimento: EPA 8270E			- 0,001	
	P. W. P			
	limite di quantificazione: 0,001		incertezza:	
Benzo(b)fluorantene		μg/l	< 0,01	0,1
Metodo di analisi di riferimento: EPA 8270E				· · · · · · · · · · · · · · · · · · ·
	limite di quantificazione: 0,01		incertezza:	
	. ,-			

Ordine dei CHIMICI e dei FISICI della Prov. di Treviso n° A093 Codice Fiscale GSTDRN42R12H823B P.IVA 01627660267 Via Pirzio Biroli n.1 - 31046 ODERZO (TV)

Triggiano, 23 ottobre 2020

Certificato n° 20LA34093

CERTIFICATO ANALISI

Benzo(k)fluorantene		μg/l	< 0,005	0,05
Metodo di analisi di riferimento: EPA 8270E				I
limite di qu	antificazione: 0,005		incertezza:	
enzo(g,h,i)perilene		μg/l	< 0,001	0,01
Metodo di analisi di riferimento: EPA 8270E		ру/і	< 0,001	0,01
limite di qu	antificazione: 0,001		incertezza:	
risene		μg/l	< 0,01	5
Metodo di analisi di riferimento: EPA 8270E		рул	< 0,01	3
limite di au	uantificazione: 0,01		incertezza:	
milic di qu	antinoazione. 0,01		moortozza.	
Dibenzo(a,h)antracene		μg/l	< 0,001	0,01
Metodo di analisi di riferimento: EPA 8270E				
limite di qu	antificazione: 0,001		incertezza:	
ndeno(1,2,3-c,d)pirene		μg/l	< 0,01	0,1
Metodo di analisi di riferimento: EPA 8270E			5,5.1	
limite di qu	antificazione: 0,01		incertezza:	
Pirene		μg/l	< 0,01	50
Metodo di analisi di riferimento: EPA 8270E			'	!
limite di qu	nantificazione: 0,01		incertezza:	
ommatoria IPA (punto 38, tabella 2, allegato 5, ti	itolo V d. Lgs 152/2006)	μg/l	< 0,01	0,1
Metodo di analisi di riferimento: EPA 8270E				
limite di qu	nantificazione: 0,01		incertezza:	
Clorometano			104	4.5
Metodo di analisi di riferimento: UNI EN ISO 15680:2005		μg/l	< 0,1	1,5
	15			
iimite ai qu	antificazione: 0,1		incertezza:	
cloroformio (triclorometano)		μg/l	< 0,01	0,15
Metodo di analisi di riferimento: UNI EN ISO 15680:2005				
limite di qu	antificazione: 0,01		incertezza:	
Cloruro di vinile		μg/l	< 0,05	0,5
Metodo di analisi di riferimento: UNI EN ISO 15680:2005			• • •	
limite di qu	nantificazione: 0,05		incertezza:	
,2 - Dicloroetano		uall	< 0,1	3
Metodo di analisi di riferimento: UNI EN ISO 15680:2005		μg/l	< 0,1	
	contifications, 0.1		incorto	
limite ai qu	antificazione: 0,1		incertezza:	

Ordine dei CHIMICI e dei FISICI della Prov. di Treviso n° A093 Codice Fiscale GSTDRN42R12H823B P.IVA 01627660267 Via Pirzio Biroli n.1 - 31046 ODFRZO (TV)

Triggiano, 23 ottobre 2020

Certificato n° 20LA34093

CERTIFICATO ANALISI

1,1 - Dicloroetilene	μg/l	0,703	0,05
Metodo di analisi di riferimento: UNI EN ISO 15680:2005	рул	0,703	0,03
limite di quantificazione: 0,005		incertezza: ± 0	,105
ricloroetilene	μg/l	0,40	1,5
Metodo di analisi di riferimento: UNI EN ISO 15680:2005	P9/1	0,40	1,0
limite di quantificazione: 0,1		incertezza: ± 0	,06
etracloroetilene	μg/l	0,33	1,1
Metodo di analisi di riferimento: UNI EN ISO 15680:2005	15	0,00	,
limite di guantificazione: 0.4		incertorze: I O	05
limite di quantificazione: 0,1		incertezza: ± 0	.05
saclorobutadiene (HCBD)	μg/l	< 0,01	0,15
Metodo di analisi di riferimento: UNI EN ISO 15680:2005			'
limite di quantificazione: 0,01		incertezza:	
ommatoria organoalogenati (punto 47, tabella 2, allegato 5, titolo V d. Lgs	μg/l	1,4	10
52/2006) Metodo di analisi di riferimento: UNI EN ISO 15680:2005		,	
Metodo di analisi di filenimento. Givi Elv 13O 13060.2003			
limite di quantificazione: 1		incertezza:	
1 - Dicloroetano	μg/l	0,23	810
Metodo di analisi di riferimento: UNI EN ISO 15680:2005	P9/1	0,23	010
limite di quantificazione: 0,1		incertezza: ± 0	,03
,2 - Dicloroetilene	μg/l	< 0,1	60
Metodo di analisi di riferimento: UNI EN ISO 15680:2005	15	10,1	
limite di quantificazione: 0,1		incertezza:	
,2 - Dicloropropano	μg/l	< 0,01	0,15
Metodo di analisi di riferimento: UNI EN ISO 15680:2005		,	
limita di quantificazione: 0.04		incertezza:	
limite di quantificazione: 0,01		incertezza.	
,1,2 - Tricloroetano	μg/l	< 0,01	0,2
Metodo di analisi di riferimento: UNI EN ISO 15680:2005		!	· · · · · · · · · · · · · · · · · · ·
limite di quantificazione: 0,01		incertezza:	
			_
,2,3 - Tricloropropano	μg/l	< 0,001	0,001
Metodo di analisi di riferimento: UNI EN ISO 15680:2005		<u> </u>	
limite di quantificazione: 0,001		incertezza:	
		ı	T
,1,2,2 - Tetracloroetano	μg/l	< 0,005	0,05
Metodo di analisi di riferimento: UNI EN ISO 15680:2005			
limite di quantificazione: 0,005	· · · · · · · · · · · · · · · · · · ·	incertezza:	

Ordine dei CHIMICI e dei FISICI della Prov. di Treviso n° A093 Codice Fiscale GSTDRN42R12H823B P.IVA 01627660267 Via Pirzio Biroli n.1 - 31046 ODERZO (TV)

Triggiano, 23 ottobre 2020

Certificato n° 20LA34093

CERTIFICATO ANALISI

Tribromomotono		< 0.04	
Fribromometano Metodo di analisi di riferimento: UNI EN ISO 15680:2005	µg/I	< 0,01	0,3
limite di quantificazione: 0,01		incertezza:	
1,2 - Dibromoetano	μg/l	< 0,001	0,001
Metodo di analisi di riferimento: UNI EN ISO 15680:2005		5,555	
limite di quantificazione: 0,001		incertezza:	
ilmite di quantificazione. 0,001		incertezza.	
Dibromoclorometano	μg/l	< 0,01	0,13
Metodo di analisi di riferimento: UNI EN ISO 15680:2005			
limite di quantificazione: 0,01		incertezza:	
		ı	
Bromodiclorometano	μg/l	< 0,01	0,17
Metodo di analisi di riferimento: UNI EN ISO 15680:2005			
limite di quantificazione: 0,01		incertezza:	
Nitrobenzene		< 0.2	2.5
Metodo di analisi di riferimento: EPA 8260 rev 3 2006	µg/I	< 0,3	3,5
limite di quantificazione: 0,3		incertezza:	
,2 - Dinitrobenzene	μg/l	< 0,3	15
Metodo di analisi di riferimento: EPA 8260 rev 3 2006		· I	l
limite di quantificazione: 0,3		incertezza:	
,3- dinitrobenzene	μg/l	< 0,3	3,7
Metodo di analisi di riferimento: EPA 8260 rev 3 2006			
limite di quantificazione: 0,3		incertezza:	
Cloronitrobenzeni (ognumo)	 μg/l	< 0,05	0,5
Metodo di analisi di riferimento: EPA 8260 rev 3 2006	μ9/1	< 0,03	0,3
limite di quantificazione: 0,05		incertezza:	
Monoclorobenzene	μg/l	< 0,1	40
Metodo di analisi di riferimento: UNI EN ISO 15680:2005			
limite di quantificazione: 0,1		incertezza:	
2 dialarahanyana	="	< 0.4	070
,2 - diclorobenzene Metodo di analisi di riferimento: UNI EN ISO 15680:2005	µg/I	< 0,1	270
limite di quantificazione: 0,1		incertezza:	
,4 - diclorobenzene	μg/l	< 0,05	0,5
Metodo di analisi di riferimento: UNI EN ISO 15680:2005	10	-,-•	
limite di quantificazione: 0,05		incertezza:	

Ordine dei CHIMICI e dei FISICI della Prov. di Treviso n° A093 Codice Fiscale GSTDRN42R12H823B P.IVA 01627660267 Via Pirzio Biroli n.1 - 31046 ODERZO (TV)

Triggiano, 23 ottobre 2020

Certificato n° 20LA34093

CERTIFICATO ANALISI

,2,4 - Triclorobenzene		μg/l	< 0,1	190
Metodo di analisi di riferimento: UNI EN ISO 1568	0:2005		<u> </u>	•
	limite di quantificazione: 0,1		incertezza:	
				1
2,4,5 - Tetraclorobenzene Metodo di analisi di riferimento: EPA 8270E		μg/l	< 0,1	1,8
Metodo di analisi di Menmento. EPA 6270E				
	limite di quantificazione: 0,1		incertezza:	
entaclorobenzene		μg/l	< 0,5	5
Metodo di analisi di riferimento: EPA 8270E			'	'
	limite di quantificazione: 0,5		incertezza:	
saclorobenzene (HCB)		μg/l	< 0,001	0,01
Metodo di analisi di riferimento: EPA 8270E				
	limite di quantificazione: 0,001		incertezza:	
- clorofenolo		μg/l	< 1	180
Metodo di analisi di riferimento: EPA 8270E		F97.	* 1	
	limite di quantificazione: 1		incertezza:	
4 - Diclorofenolo		μg/l	< 1	110
Metodo di analisi di riferimento: EPA 8270E				
	limite di quantificazione: 1		incertezza:	
4,6 - Triclorofenolo		μg/l	< 0,5	5
Metodo di analisi di riferimento: EPA 8270E				
	limite di quantificazione: 0,5		incertezza:	
entaclorofenolo		μg/l	< 0,05	0,5
Metodo di analisi di riferimento: EPA 8270E		13	3,60	.,.
	limite di quantificazione: 0,05		incertezza:	
laclor		μg/l	< 0,01	0,1
Metodo di analisi di riferimento: EPA 8270E			- 0,01	
	limite di quantificazione: 0,01		incertezza:	
ldrin		μg/l	< 0,003	0,03
Metodo di analisi di riferimento: EPA 8270E		L9.,	,	1 2,00
	limite di quantificazione: 0,003		incertezza:	
function a			10.04	
trazina Metodo di analisi di riferimento: EPA 8270E		µg/l	< 0,01	0,3
stodd di didaidi di Indianond. El A 0210E				
	limite di quantificazione: 0,01		incertezza:	

Ordine dei CHIMICI e dei FISICI della Prov. di Treviso nº A093 Codice Fiscale GSTDRN42R12H823B P.IVA 01627660267 Via Pirzio Biroli n.1 - 31046 ODERZO (TV)

Triggiano, 23 ottobre 2020

Certificato n° 20LA34093

CERTIFICATO ANALISI

Alfa-esacloroesano	μg/l	< 0,01	0,1
Metodo di analisi di riferimento: EPA 8270E			·
limite di quantificazione: 0,01		incertezza:	
Beta-esacloroesano	μg/l	< 0,01	0,1
Metodo di analisi di riferimento: EPA 8270E	13	3,51	
limite di quantificazione: 0,01		incertezza:	
N (15-d)	,	. 0.04	1
Gamma-esacloroesano (lindano) Metodo di analisi di riferimento: EPA 8270E	μg/l	< 0,01	0,1
motodo di diferimonio. El 7702102			
limite di quantificazione: 0,01		incertezza:	
Clordano	μg/l	< 0,01	0,1
Metodo di analisi di riferimento: EPA 8270E		ļ	
limite di quantificazione: 0,01		incertezza:	
200 007 005			1
DDD, DDT, DDE Metodo di analisi di riferimento: EPA 8270E	μg/l	< 0,01	0,1
limite di quantificazione: 0,01		incertezza:	
Dieldrin	μg/l	< 0,003	0,03
Metodo di analisi di riferimento: EPA 8270E		•	1
limite di quantificazione: 0,003		incertezza:	
Endrin	 μg/l	< 0,01	0,1
Metodo di analisi di riferimento: EPA 8270E		-,	<u> </u>
limite di quantificazione: 0,01		incertezza:	
	/ -l l		
Sommatoria fitofarmaci (punto 86, tabella 2, allegato 5, titolo \ (52/2006)	μg/l	< 0,05	0,5
Metodo di analisi di riferimento: EPA 8270E		!	'
limite di quantificazione: 0,05		incertezza:	
Clorpirifos	μg/l	< 0,1	
Metodo di analisi di riferimento: EPA 8270E		70,1	
limite di quantificazione: 0,1		incertezza:	
iiiiiie di quantinoazione. 0,1		mocrezza.	
Dimetoato	μg/l	< 0,1	
Metodo di analisi di riferimento: EPA 8270E			
limite di quantificazione: 0,1		incertezza:	
Deltametrina	μg/l	< 0,1	
Metodo di analisi di riferimento: EPA 8270E	L-3/,	• •, •	
limito di quantificazione: 0.1		incertezza:	
limite di quantificazione: 0,1		incertezza:	

Ordine dei CHIMICI e dei FISICI della Prov. di Treviso n° A093 Codice Fiscale GSTDRN42R12H823B P.IVA 01627660267 Via Pirzio Biroli n.1 - 31046 ODERZO (TV)

Triggiano, 23 ottobre 2020

Certificato nº 20LA34093

CERTIFICATO ANALISI

(valido a tutti gli effetti come da D. L. n° 842/28)

Fention		μg/l	< 0,1	
Metodo di analisi di riferimento: EPA 8270E				
	limite di quantificazione: 0,1		incertezza:	
Oxifluorfen		μg/l	< 0,1	
Metodo di analisi di riferimento: EPA 8270E				
	limite di quantificazione: 0,1		incertezza:	
Paration		μg/l	< 0,1	
Metodo di analisi di riferimento: EPA 8270E				<u>.</u>
	limite di quantificazione: 0,1		incertezza:	
Simazina		μg/l	< 0,1	
Metodo di analisi di riferimento: EPA 8270E			•	•
	limite di quantificazione: 0,1		incertezza:	
Sommatoria pesticidi fosforati		μg/l	< 0,1	
Metodo di analisi di riferimento: EPA 8270E				•
	limite di quantificazione: 0,1		incertezza:	
PCB		μg/l	< 0,001	0,01
Metodo di analisi di riferimento: APAT CNR IRSA	5110 Man 29 2003			
	limite di quantificazione: 0,001		incertezza:	

Note:

La determinazione dei metalli è stata effettuata sul campione filtrato e acidificato. Nel calcolo della concentrazione degli elementi in traccia non viene considerato il recupero determinato dal laboratorio il quale risulta essere compreso tra 90 e 110 %.

L'incertezza di misura riportata nel presente certificato di analisi è espressa come incertezza estesa con un fattore di copertura (k) pari a 2 corrispondente a un livello di fiducia di circa 95%.

I risultati delle analisi si riferiscono ESCLUSIVAMENTE al campione esaminato; si declina ogni responsabilità nei casi di utilizzo del presente atto in difformità agli usi consentiti dalla Legge. Le analisi da eseguire sono state commissionate dal committente e dunque si declina ogni responsabilità in merito alla completezza delle informazioni.

Le analisi sono state eseguite dalla CHIMIE Srl e i LABORATORI ANALISI CHIMICHE DOTT. ADRIANO GIUSTO - SERVIZI AMBIENTE S.R.L., accreditato al n. 0128L, del gruppo LIFEANALYTICS.

Il chimico

Laboratorio Analisi Chimiche Dott. A. Giusto Servizi Ambiente S.r.I. - Chimie S.r.I. Gruppo LIFEANALYTICS

MR-07-01 VERBALE DI PRELIEVO CAMPIONI

Rev 3 del 20/01/17

Firma e Timbro dell'Azienda

Firma del Prelevatore:___

MR-07-01 VERBALE DI PRELIEVO CAMPIONI

Rev 3 del 20/01/17

N° Verbale di prelievo : 93/	10
Data: <u>26/40/いい</u> Ora: <u>45:39</u> Condi	
Nome prelevatore: FRANCESCO GU	
Qualifica prelevatore: DITORB IN	
Procedura di campionamento e trasporto	: ISO 5667-11 ed APAT CNR IRSA n° 1030
	iscarica per rifiuti non pericolosi sita in c.da
Formica (BR)	
Indirizzo luogo di campionamento: c.da l	Formica – Brindisi.
Descrizione Campione: Monitoraggio Acq	ue di falda
Punto di prelievo: ABCLL	
Etichetta Campione:	
PZ A T 19,8 °C; P 39,6 m; O2disc. 5, 55	mg/l; ORP1817 mV; pH 7,18; Cond. 2840 µS/cm
· · · · · · · · · · · · · · · · · · ·	mg/l; ORP)S _{4,9} mV; pH 7, 19; Cond. 3210 μS/cm
	mg/l; ORP 153, 8 mV; pH 7,15 ; Cond. 333- μS/cm
	mg/l; ORP 143 7 mV; pH 7,16; Cond. 2970 μS/cm
•	mg/l; ORP mV; pH; Cond. μS/cm
	mg/l; ORP mV; pH ; Cond. μS/cm
	mg/l; ORPmV; pH; CondμS/cm
	mg/l; ORPmV; pH; Cond. μS/cm
Note: Prima di ogni campionamento è stato eff	
	elle aliquote campionate sono conformi a quanto
riportato nei manuale APAT CNR IRSA n° 1030	
	It in contenitori in polietilene; n°
	ccuro; n° / contenitori sterili da 100cc per la
batteriologica, n° 2 vials in vetro scuro da	+O IIII.
PROVE RICHIESTE	METODICA
Come da vs commessa nº 0002/18	Come da vs commessa nº 0002/18
Firma del D	relevatore:

Firma e Timbro dell'Azienda.

MR-07-01 VERBALE DI PRELIEVO CAMPIONI

Rev 3 del 20/01/17

N° Verbale di prelievo : 94/10	
Data: <u>26/6/2020</u> Ora: <u>15:30</u> Condizioni ambientali: <u>Տັດເຄ</u>	
Nome prelevatore: ひて、 CHID、 F、 GUNGO ム	- WWW.
Qualifica prelevatore: און פאולסים ואי כאולזים באולזים	
Procedura di campionamento e trasporto: ISO 5667-11 ed APAT CNR II	RSA n° 1030
Cliente: FORMICA AMBIENTE Srl – Discarica per rifiuti non pericolo	
Formica (BR)	
Indirizzo luogo di campionamento: c.da Formica – Brindisi.	
Descrizione Campione: Monitoraggio Acque di falda	
Punto di prelievo: V1 V1 PEL, PEL, PEL, PEL, TAF, 4, 8	
Etichetta Campione:	
PZ V1 T 210 °C; P40, b m; O2disc. 4, 18 mg/l; ORP 111, 3 mV; pH 7,11 ;	Cond. 3330 µS/cm
PZ V2 T 19,8 °C; P40, L m; O2disc. 4, 51 mg/l; ORP 166 1 mV; pH 713;	Cond. 257 0 μS/cm
PZ PRZ T 20,5°C; P36,5 m; O2disc. 9,15 mg/l; ORP 106,9 mV; pH 7,39 ;	
PZPCZT 198°C; P44, V m; O2disc. 44) mg/l; ORP 1709 mV; pH 7,09;	
PZ PE1 T 19, L °C; P44, 5 m; O2disc. 4, 36 mg/l; ORP 166 3 mV; pH 7, L ;	
PZ _{TAF} T 20,) °C; P / m; O2disc.6, 92 mg/l; ORP 160,3 mV; pH 7, ε3;	Cond. 3530 µS/cm
PZ 4 T 201 °C; P 436 m; O2disc. 515 mg/l; ORP 118,6 mV; pH 7,15;	
PZ & T 19,6 °C; P 41,7 m; O2disc. 5, 3) mg/l; ORP 180, L mV; pH 7,09;	
Note: Prima di ogni campionamento è stato effettuato lo spurgo con tecnica low-	
Le quantità e le modalità di conservazione delle aliquote campionate sono co	onformi a quanto
riportato nel manuale APAT CNR IRSA nº 1030 Man 29/2003.	
a transfer of the second of the content of the police of the content of the conte	ene nº /
Sono stati prelevati n° / campioni da / It in contenitori in polietili campioni da / It in contenitori in vetro scuro; n / contenitori sterili	
batteriologica, n° 2 vials in vetro scuro da 40 ml.	•
PROVE RICHIESTE METODICA Come da vs commessa n° 0002/18 Come da vs commessa n	
Come da vs commessa il 0002/10	

Firma del Prelevatore:

Firma e Timbro dell'Aziendar

Ordine dei CHIMICI e dei FISICI della Prov. di Treviso n° A093 Codice Fiscale GSTDRN42R12H823B P.IVA 01627660267 Via Pírzio Biroli n.1 - 31046 ODERZO (TV)

Triggiano, 30 ottobre 2020

Certificato n° 20Cl00307

CERTIFICATO ANALISI

(valido a tutti gli effetti come da D. L. nº 842/28)

COMMITTENTE: FORMICA AMBIENTE srl - Via Groenlandia 47 - Roma

ETICHETTA: Campione di acqua di falda prelevato dal pozzo n° V1 della discarica per rifiuti non pericolosi sita in c.da Formica (BR)

Data ricezione campione: 26/10/20 Profondità della falda: 40,6 m

Il campione è stato prelevato dal tecnico dello studio CHIMIE Srl, Dott. F. Gungolo come da verbale nº 94/10

RISULTATI

PARAMETRO	unità di misura	valore determinato		D. Lgs. 152/06 Tab. 2 allegato 5 alla parte IV Titolo V
рН		7,11		
Metodo di analisi di riferimento: UNI EN ISO 10523:2012				
limite di quantificazione: > 1 e < 13		incertezza: ±	0,12	
Temperatura	°C	21,0		
Metodo di analisi di riferimento: APAT CNR IRSA 2100 Man 29 2003				•
limite di quantificazione: 1		incertezza: ±	0,2	
Ossigeno disciolto	mg/l	4,18		
Metodo di analisi di riferimento: Strumentale - Sensore di Ossigeno Disciolto a luminescenza LDO				•
limite di quantificazione: 0,5		incertezza: ±	0,42	
Potenziale Redox	mV	111,3		
Metodo di analisi di riferimento: Strumentale - Sensore ORP				
limite di quantificazione: 10		incertezza: ±	11,1	
Conducibilità	uS/cm a 20 °C	3330		
Metodo di analisi di riferimento: UNI EN 27888:1995				•
limite di quantificazione: 10		incertezza: ±	67	
1,1 - Dicloroetilene	μg/l	< 0,005		0,05
Metodo di analisi di riferimento: UNI EN ISO 15680:2005				
limite di quantificazione: 0,005		incertezza:		
1,2 - Dicloropropano	μg/l	< 0,01		0,15
Metodo di analisi di riferimento: UNI EN ISO 15680:2005		,		1
limite di quantificazione: 0,01		incertezza:		

Note:

L'incertezza di misura riportata nel presente certificato di analisi è espressa come incertezza estesa con un fattore di copertura (k) pari a 2 corrispondente a un livello di fiducia di circa 95%.

I risultati delle analisi si riferiscono ESCLUSIVAMENTE al campione esaminato; si declina ogni responsabilità nei casi di utilizzo del presente atto in difformità agli usi consentiti dalla Legge. Le analisi da eseguire sono state commissionate dal committente e dunque si declina ogni responsabilità in merito alla completezza delle informazioni.

Le analisi sono state eseguite dalla CHIMIE Srl e i LABORATORI ANALISI CHIMICHE DOTT. ADRIANO GIUSTO - SERVIZI AMBIENTE S.R.L., accreditato al n. 0128L, del gruppo LIFEANALYTICS.

IL CHIMICO

Laboratorio Analisi Chimiche Dott. A. Giusto Servizi Ambiente S.r.I. - Chimie S.r.I. Gruppo LIFEANALYTICS

Ordine dei CHIMICI e dei FISICI della Prov. di Treviso nº A093 Codice Fiscale GSTDRN42R12H823B P.IVA 01627660267 Via Pirzio Biroli n.1 - 31046 ODTRZO (TV)

Triggiano, 30 ottobre 2020

Certificato n° 20CI00326

CERTIFICATO ANALISI

(valido a tutti gli effetti come da D. L. nº 842/28)

COMMITTENTE: FORMICA AMBIENTE srl - Via Groenlandia 47 - Roma

ETICHETTA: Campione di acqua di falda prelevato dal pozzo n° **10** della discarica per rifiuti non pericolosi sita in c.da Formica (BR)

Data ricezione campione: 26/10/20 Profondità della falda: 44,2 m

Il campione è stato prelevato dal tecnico dello studio CHIMIE Srl, Dott. F. Gungolo come da verbale nº 93/10

RISULTATI

PARAMETRO	unità di misura	valore determinato	D. Lgs. 152/06 Tab. 2 allegato alla parte IV Titolo V
рН		7,16	
Metodo di analisi di riferimento: UNI EN ISO 10523:2012			
limite di quantificazione: > 1 e < 13		incertezza: ±	0,12
Temperatura	°C	19,9	
Metodo di analisi di riferimento: APAT CNR IRSA 2100 Man 29 2003			l l
limite di quantificazione: 1		incertezza: ±	0,2
Ossigeno disciolto	mg/l	4,93	
Metodo di analisi di riferimento: Strumentale - Sensore di Ossigeno Disciolto a luminescenza LDO		•	
limite di quantificazione: 0,5		incertezza: ±	0,49
Potenziale Redox	mV	143,7	
Metodo di analisi di riferimento: Strumentale - Sensore ORP			'
limite di quantificazione: 10		incertezza: ±	14,4
Conducibilità	uS/cm a 20 °C	2970	
Metodo di analisi di riferimento: UNI EN 27888:1995			I
limite di quantificazione: 10		incertezza: ±	59
1,1 - Dicloroetilene	μg/l	0,024	0,05
Metodo di analisi di riferimento: UNI EN ISO 15680:2005		•	l l
limite di quantificazione: 0,005		incertezza: ±	0,004
1,2 - Dicloropropano	μg/l	< 0,01	0,15
Metodo di analisi di riferimento: UNI EN ISO 15680:2005		-,	
limite di quantificazione: 0,01		incertezza:	

Note

L'incertezza di misura riportata nel presente certificato di analisi è espressa come incertezza estesa con un fattore di copertura (k) pari a 2 corrispondente a un livello di fiducia di circa 95%.

I risultati delle analisi si riferiscono ESCLUSIVAMENTE al campione esaminato; si declina ogni responsabilità nei casi di utilizzo del presente atto in difformità agli usi consentiti dalla Legge. Le analisi da eseguire sono state commissionate dal committente e dunque si declina ogni responsabilità in merito alla completezza delle informazioni.

Le analisi sono state eseguite dalla CHIMIE Srl e i LABORATORI ANALISI CHIMICHE DOTT. ADRIANO GIUSTO - SERVIZI AMBIENTE S.R.L., accreditato al n. 0128L, del gruppo LIFEANALYTICS.

IL CHIMICO

Laboratorio Analisi Chimiche Dott. A. Giusto Servizi Ambiente S.r.I. - Chimie S.r.I. Gruppo LIFEANALYTICS

Ordine dei CHIMICI e dei FISICI della Prov. di Treviso nº A093 Codice Fiscale GSTDRN42R12H823B P.IVA 01627660267 Via Pírzio Biroli n.1 - 31046 ODERZO (TV)

Triggiano, 30 ottobre 2020

Certificato n° 20Cl00325

CERTIFICATO ANALISI

(valido a tutti gli effetti come da D. L. n° 842/28)

COMMITTENTE: CAVED Srl, C.da Formica - Brindisi

ETICHETTA: Campione di acqua di falda prelevato dal pozzo C della CAVED Srl sita in c.da Formica (BR)

Data ricezione campione: 26/10/20 Profondità della falda: 41,6 m

Il campione è stato prelevato dal tecnico dello studio CHIMIE Srl, Dott. F. Gungolo come da verbale nº 93/10

RISULTATI

PARAMETRO	unità di misura	valore determinato	D. Lgs. 152/06 Tab. 2 allegato 5 alla parte IV Titolo V
pH		7,15	
Metodo di analisi di riferimento: UNI EN ISO 10523:2012		•	
limite di quantificazione: > 1 e < 13		incertezza: ± 0	,12
Temperatura	°C	19,9	
Metodo di analisi di riferimento: APAT CNR IRSA 2100 Man 29 2003			
limite di quantificazione: 1		incertezza: ± 0	,2
Ossigeno disciolto	mg/l	5,12	
Metodo di analisi di riferimento: Strumentale - Sensore di Ossigeno Disciolto a luminescenza LDO		•	•
limite di quantificazione: 0,5		incertezza: ± 0	,51
Potenziale Redox	mV	151,8	
Metodo di analisi di riferimento: Strumentale - Sensore ORP			·
limite di quantificazione: 10		incertezza: ± 1	5,2
Conducibilità	uS/cm a 20 °C	3330	
Metodo di analisi di riferimento: UNI EN 27888:1995		'	'
limite di quantificazione: 10		incertezza: ± 6	7
1,1 - Dicloroetilene	μg/l	< 0,005	0,05
Metodo di analisi di riferimento: UNI EN ISO 15680:2005		-	'
limite di quantificazione: 0,005		incertezza:	
1,2 - Dicloropropano	μg/l	< 0,01	0,15
Metodo di analisi di riferimento: UNI EN ISO 15680:2005		•	•
limite di quantificazione: 0,01		incertezza:	

Note:

L'incertezza di misura riportata nel presente certificato di analisi è espressa come incertezza estesa con un fattore di copertura (k) pari a 2 corrispondente a un livello di fiducia di circa 95%.

I risultati delle analisi si riferiscono ESCLUSIVAMENTE al campione esaminato; si declina ogni responsabilità nei casi di utilizzo del presente atto in difformità agli usi consentiti dalla Legge. Le analisi da eseguire sono state commissionate dal committente e dunque si declina ogni responsabilità in merito alla completezza delle informazioni.

Le analisi sono state eseguite dalla CHIMIE Srl e i LABORATORI ANALISI CHIMICHE DOTT. ADRIANO GIUSTO - SERVIZI AMBIENTE S.R.L., accreditato al n. 0128L, del gruppo LIFEANALYTICS.

IL CHIMICO

Laboratorio Analisi Chimiche Dott. A. Giusto Servizi Ambiente S.r.I. - Chimie S.r.I. Gruppo LIFEANALYTICS

Ordine dei CHIMICI e dei FISICI della Prov. di Treviso n° A093 Codice Fiscale GSTDRN42R12H823B P.IVA 01627660267 Via Pirzio Biroli n.1 - 31046 ODERZO (TV)

Triggiano, 30 ottobre 2020

Certificato n° 20CI00324

CERTIFICATO ANALISI

(valido a tutti gli effetti come da D. L. nº 842/28)

COMMITTENTE: CAVED Srl, C.da Formica - Brindisi

ETICHETTA: Campione di acqua di falda prelevato dal pozzo B della CAVED Srl sita in c.da Formica (BR)

Data ricezione campione: 26/10/20 Profondità della falda: 41,6 m

Il campione è stato prelevato dal tecnico dello studio CHIMIE Srl, Dott. F. Gungolo come da verbale nº 93/10

RISULTATI

PARAMETRO	unità di misura	valore determinato	D. Lgs. 152/06 Tab. 2 allegato 5 alla parte IV Titolo V
рН		7,29	
Metodo di analisi di riferimento: UNI EN ISO 10523:2012			
limite di quantificazione: > 1 e < 13		incertezza: ±	0,12
Temperatura	°C	19,9	
Metodo di analisi di riferimento: APAT CNR IRSA 2100 Man 29 2003			•
limite di quantificazione: 1		incertezza: ±	0,2
Ossigeno disciolto	mg/l	4,76	
Metodo di analisi di riferimento: Strumentale - Sensore di Ossigeno Disciolto a luminescenza LDO			•
limite di quantificazione: 0,5		incertezza: ±	0,48
Potenziale Redox	mV	156,9	
Metodo di analisi di riferimento: Strumentale - Sensore ORP			•
limite di quantificazione: 10		incertezza: ±	15,7
Conducibilità	uS/cm a 20 °C	3210	
Metodo di analisi di riferimento: UNI EN 27888:1995			!
limite di quantificazione: 10		incertezza: ±	64,2
1.1 - Dicloroetilene	μg/l	< 0,005	0,05
Metodo di analisi di riferimento: UNI EN ISO 15680:2005		•	
limite di quantificazione: 0,005		incertezza:	
1,2 - Dicloropropano	μg/l	< 0,01	0,15
Metodo di analisi di riferimento: UNI EN ISO 15680:2005		•	· · · · · · · · · · · · · · · · · · ·
limite di quantificazione: 0,01		incertezza:	
1			

Note:

L'incertezza di misura riportata nel presente certificato di analisi è espressa come incertezza estesa con un fattore di copertura (k) pari a 2 corrispondente a un livello di fiducia di circa 95%.

I risultati delle analisi si riferiscono ESCLUSIVAMENTE al campione esaminato; si declina ogni responsabilità nei casi di utilizzo del presente atto in difformità agli usi consentiti dalla Legge. Le analisi da eseguire sono state commissionate dal committente e dunque si declina ogni responsabilità in merito alla completezza delle informazioni.

Le analisi sono state eseguite dalla CHIMIE Srl e i LABORATORI ANALISI CHIMICHE DOTT. ADRIANO GIUSTO - SERVIZI AMBIENTE S.R.L., accreditato al n. 0128L, del gruppo LIFEANALYTICS.

IL CHIMICO

Laboratorio Analisi Chimiche Dott. A. Giusto Servizi Ambiente S.r.I. - Chimie S.r.I. Gruppo LIFEANALYTICS

Ordine dei CHIMICI e dei FISICI della Prov. di Treviso n° A093 Codice Fiscale GSTDRN42R12H823B P.IVA 01627660267 Via Pirzio Biroli n.1 - 31046 ODERZO (TV)

Triggiano, 30 ottobre 2020

Certificato n° 20CI00323

CERTIFICATO ANALISI

(valido a tutti gli effetti come da D. L. nº 842/28)

COMMITTENTE: CAVED Srl, C.da Formica - Brindisi

ETICHETTA: Campione di acqua di falda prelevato dal pozzo A della CAVED Srl sita in c.da Formica (BR)

Data ricezione campione: 26/10/20 Profondità della falda: 39,6 m

Il campione è stato prelevato dal tecnico dello studio CHIMIE Srl, Dott. F. Gungolo come da verbale nº 93/10

RISULTATI

PARAMETRO	unità di misura	valore determinato	D. Lgs. 152/06 Tab. 2 allegato 5 alla parte IV Titolo V
рН		7,18	
Metodo di analisi di riferimento: UNI EN ISO 10523:2012			•
limite di quantificazione: >1 e <13		incertezza: ± 0	,12
Temperatura	°C	19,8	
Metodo di analisi di riferimento: APAT CNR IRSA 2100 Man 29 2003			
limite di quantificazione: 1		incertezza: ± 0	,2
Ossigeno disciolto	mg/l	5,55	
Metodo di analisi di riferimento: Strumentale - Sensore di Ossigeno Disciolto a luminescenza LDO			·
limite di quantificazione: 0,5		incertezza: ± 0	1,56
Potenziale Redox	mV	186,7	
Metodo di analisi di riferimento: Strumentale - Sensore ORP			·
limite di quantificazione: 10		incertezza: ± 1	8,7
Conducibilità	uS/cm a 20 °C	2840	
Metodo di analisi di riferimento: UNI EN 27888:1995		•	•
limite di quantificazione: 10		incertezza: ± 5	66,8
1,1 - Dicloroetilene	μg/l	< 0,005	0,05
Metodo di analisi di riferimento: UNI EN ISO 15680:2005		•	•
limite di quantificazione: 0,005		incertezza:	
1,2 - Dicloropropano	μg/l	< 0,01	0,15
Metodo di analisi di riferimento: UNI EN ISO 15680:2005			
limite di quantificazione: 0,01		incertezza:	

Note:

L'incertezza di misura riportata nel presente certificato di analisi è espressa come incertezza estesa con un fattore di copertura (k) pari a 2 corrispondente a un livello di fiducia di circa 95%.

I risultati delle analisi si riferiscono ESCLUSIVAMENTE al campione esaminato; si declina ogni responsabilità nei casi di utilizzo del presente atto in difformità agli usi consentiti dalla Legge. Le analisi da eseguire sono state commissionate dal committente e dunque si declina ogni responsabilità in merito alla completezza delle informazioni.

Le analisi sono state eseguite dalla CHIMIE Srl e i LABORATORI ANALISI CHIMICHE DOTT. ADRIANO GIUSTO - SERVIZI AMBIENTE S.R.L., accreditato al n. 0128L, del gruppo LIFEANALYTICS.

IL CHIMICO

Laboratorio Analisi Chimiche Dott. A. Giusto Servizi Ambiente S.r.I. - Chimie S.r.I. Gruppo LIFEANALYTICS

Ordine dei CHIMICI e dei FISICI della Prov. di Treviso n° A093 Codice Fiscale GSTDRN42R12H823B P.IVA 01627660267 Via Pirzio Biroli n.1 - 31046 ODERZO (TV)

Triggiano, 30 ottobre 2020

Certificato n° 20Cl00317

CERTIFICATO ANALISI

(valido a tutti gli effetti come da D. L. nº 842/28)

COMMITTENTE: FORMICA AMBIENTE srl - Via Groenlandia 47 - Roma

ETICHETTA: Campione di acqua di falda prelevato dal pozzo n° PR1 della discarica per rifiuti non pericolosi sita in c.da Formica (BR)

Data ricezione campione: 26/10/20 Profondità della falda: 41,6 m

Il campione è stato prelevato dal tecnico dello studio CHIMIE Srl, P. Chim. G. Cipriano come da verbale n° 92/10

RISULTATI

PARAMETRO	unità di misura	valore determinato		D. Lgs. 152/06 Tab. 2 allegato 5 alla parte IV Titolo V
рН		7,38		
Metodo di analisi di riferimento: UNI EN ISO 10523:2012				•
limite di quantificazione: > 1 e < 13		incertezza: ±	0,12	
Temperatura	°C	20,0		
Metodo di analisi di riferimento: APAT CNR IRSA 2100 Man 29 2003				<u>'</u>
limite di quantificazione: 1		incertezza: ±	0,2	
Ossigeno disciolto	mg/l	9,43		
Metodo di analisi di riferimento: Strumentale - Sensore di Ossigeno Disciolto a luminescenza LDO				
limite di quantificazione: 0,5		incertezza: ±	0,94	
Potenziale Redox	mV	115,3		
Metodo di analisi di riferimento: Strumentale - Sensore ORP				
limite di quantificazione: 10		incertezza: ±	11,5	
Conducibilità	uS/cm a 20 °C	3600		
Metodo di analisi di riferimento: UNI EN 27888:1995				'
limite di quantificazione: 10		incertezza: ±	72	
1,1 - Dicloroetilene	μg/l	< 0,005		0,05
Metodo di analisi di riferimento: UNI EN ISO 15680:2005				'
limite di quantificazione: 0,005		incertezza:		
1,2 - Dicloropropano	μg/l	< 0,01		0,15
Metodo di analisi di riferimento: UNI EN ISO 15680:2005		,		-1
limite di quantificazione: 0,01		incertezza:		

Note:

L'incertezza di misura riportata nel presente certificato di analisi è espressa come incertezza estesa con un fattore di copertura (k) pari a 2 corrispondente a un livello di fiducia di circa 95%.

I risultati delle analisi si riferiscono ESCLUSIVAMENTE al campione esaminato; si declina ogni responsabilità nei casi di utilizzo del presente atto in difformità agli usi consentiti dalla Legge. Le analisi da eseguire sono state commissionate dal committente e dunque si declina ogni responsabilità in merito alla completezza delle informazioni.

Le analisi sono state eseguite dalla CHIMIE Srl e i LABORATORI ANALISI CHIMICHE DOTT. ADRIANO GIUSTO - SERVIZI AMBIENTE S.R.L., accreditato al n. 0128L, del gruppo LIFEANALYTICS.

IL CHIMICO

Laboratorio Analisi Chimiche Dott. A. Giusto Servizi Ambiente S.r.I. - Chimie S.r.I. Gruppo LIFEANALYTICS

Ordine dei CHIMICI e dei FISICI della Prov. di Treviso n° A093 Codice Fiscale GSTDRN42R12H823B P.IVA 01627660267 Via Pirzio Biroli n.1 - 31046 ODERZO (TV)

Triggiano, 30 ottobre 2020

Certificato n° 20Cl00316

CERTIFICATO ANALISI

(valido a tutti gli effetti come da D. L. nº 842/28)

COMMITTENTE: FORMICA AMBIENTE srl - Via Groenlandia 47 - Roma

ETICHETTA: Campione di acqua di falda prelevato dal pozzo n° **5A** della discarica per rifiuti non pericolosi sita in c.da Formica (BR)

Data ricezione campione: 26/10/20 Profondità della falda: 44,3 m

Il campione è stato prelevato dal tecnico dello studio CHIMIE Srl, P. Chim. G. Cipriano come da verbale n° 92/10

RISULTATI

PARAMETRO	unità di misura	valore determinato	D. Lgs. 152/06 Tab. 2 allegato 5 alla parte IV Titolo V
pH		7,10	
Metodo di analisi di riferimento: UNI EN ISO 10523:2012			·
limite di quantificazione: > 1 e < 13		incertezza: ±	0,12
Temperatura	°C	21,2	
Metodo di analisi di riferimento: APAT CNR IRSA 2100 Man 29 2003		•	'
limite di quantificazione: 1		incertezza: ±	0,2
Ossigeno disciolto	mg/l	5,41	
Metodo di analisi di riferimento: Strumentale - Sensore di Ossigeno Disciolto a luminescenza LDO		•	'
limite di quantificazione: 0,5		incertezza: ±	0,54
Potenziale Redox	mV	114,1	
Metodo di analisi di riferimento: Strumentale - Sensore ORP			-
limite di quantificazione: 10		incertezza: ±	11,4
Conducibilità	uS/cm a 20 °C	3700	
Metodo di analisi di riferimento: UNI EN 27888:1995			·
limite di quantificazione: 10		incertezza: ±	74
1,1 - Dicloroetilene	μg/l	0,836	0,05
Metodo di analisi di riferimento: UNI EN ISO 15680:2005		5,555	<u> </u>
limite di quantificazione: 0,005		incertezza: ±	0,125
1,2 - Dicloropropano	μg/l	0,024	0.15
Metodo di analisi di riferimento: UNI EN ISO 15680:2005		0,024	2,.0
limite di quantificazione: 0,01		incertezza: ±	0,004

Note:

L'incertezza di misura riportata nel presente certificato di analisi è espressa come incertezza estesa con un fattore di copertura (k) pari a 2 corrispondente a un livello di fiducia di circa 95%.

I risultati delle analisi si riferiscono ESCLUSIVAMENTE al campione esaminato; si declina ogni responsabilità nei casi di utilizzo del presente atto in difformità agli usi consentiti dalla Legge. Le analisi da eseguire sono state commissionate dal committente e dunque si declina ogni responsabilità in merito alla completezza delle informazioni.

Le analisi sono state eseguite dalla CHIMIE Srl e i LABORATORI ANALISI CHIMICHE DOTT. ADRIANO GIUSTO - SERVIZI AMBIENTE S.R.L., accreditato al n. 0128L, del gruppo LIFEANALYTICS.

IL CHIMICO

Laboratorio Analisi Chimiche Dott. A. Giusto Servizi Ambiente S.r.I. - Chimie S.r.I. Gruppo LIFEANALYTICS

Ordine dei CHIMICI e dei FISICI della Prov. di Treviso n° A093 Codice Fiscale GSTDRN42R12H823B P.IVA 01627660267 Via Pirzio Biroli n.1 - 31046 ODERZO (TV)

Triggiano, 30 ottobre 2020

Certificato n° 20Cl00315

CERTIFICATO ANALISI

(valido a tutti gli effetti come da D. L. nº 842/28)

COMMITTENTE: FORMICA AMBIENTE srl - Via Groenlandia 47 - Roma

ETICHETTA: Campione di acqua di falda prelevato dal pozzo n° **4A** della discarica per rifiuti non pericolosi sita in c.da Formica (BR)

Data ricezione campione: 26/10/20 Profondità della falda: 43,5 m

Il campione è stato prelevato dal tecnico dello studio CHIMIE Srl, P. Chim. G. Cipriano come da verbale n° 92/10

RISULTATI

PARAMETRO	unità di misura	valore determinato	D. Lgs. 152/06 Tab. 2 allegato 5 alla parte IV Titolo V
pH		7,09	
Metodo di analisi di riferimento: UNI EN ISO 10523:2012		•	
limite di quantificazione: > 1 e < 13		incertezza: ±	0,12
Temperatura	°C	22,1	
Metodo di analisi di riferimento: APAT CNR IRSA 2100 Man 29 2003			
limite di quantificazione: 1		incertezza: ±	0,2
Ossigeno disciolto	mg/l	4,88	
Metodo di analisi di riferimento: Strumentale - Sensore di Ossigeno Disciolto a luminescenza LDO		,	
limite di quantificazione: 0,5		incertezza: ±	0,49
Potenziale Redox	mV	110,2	
Metodo di analisi di riferimento: Strumentale - Sensore ORP			
limite di quantificazione: 10		incertezza: ±	11,0
Conducibilità	uS/cm a 20 °C	3590	
Metodo di analisi di riferimento: UNI EN 27888:1995			-
limite di quantificazione: 10		incertezza: ±	72
1,1 - Dicloroetilene	μg/l	0,061	0,05
Metodo di analisi di riferimento: UNI EN ISO 15680:2005		,	
limite di quantificazione: 0,005		incertezza: ±	0,009
1,2 - Dicloropropano	μg/l	< 0,01	0,15
Metodo di analisi di riferimento: UNI EN ISO 15680:2005		-,-	
limite di quantificazione: 0,01		incertezza:	

Note:

L'incertezza di misura riportata nel presente certificato di analisi è espressa come incertezza estesa con un fattore di copertura (k) pari a 2 corrispondente a un livello di fiducia di circa 95%.

I risultati delle analisi si riferiscono ESCLUSIVAMENTE al campione esaminato; si declina ogni responsabilità nei casi di utilizzo del presente atto in difformità agli usi consentiti dalla Legge. Le analisi da eseguire sono state commissionate dal committente e dunque si declina ogni responsabilità in merito alla completezza delle informazioni.

Le analisi sono state eseguite dalla CHIMIE Srl e i LABORATORI ANALISI CHIMICHE DOTT. ADRIANO GIUSTO - SERVIZI AMBIENTE S.R.L., accreditato al n. 0128L, del gruppo LIFEANALYTICS.

IL CHIMICO

Laboratorio Analisi Chimiche Dott. A. Giusto Servizi Ambiente S.r.I. - Chimie S.r.I. Gruppo LIFEANALYTICS

Ordine dei CHIMICI e dei FISICI della Prov. di Treviso n° A093 Codice Fiscale GSTDRN42R12H823B P.IVA 01627660267 Via Pirzio Biroli n.1 - 31046 ODERZO (TV)

Triggiano, 30 ottobre 2020

Certificato n° 20CI00314

CERTIFICATO ANALISI

(valido a tutti gli effetti come da D. L. nº 842/28)

COMMITTENTE: FORMICA AMBIENTE srl - Via Groenlandia 47 - Roma

ETICHETTA: Campione di acqua di falda prelevato dal pozzo n° 8 della discarica per rifiuti non pericolosi sita in c.da Formica (BR)

Data ricezione campione: 26/10/20 Profondità della falda: 41,7 m

Il campione è stato prelevato dal tecnico dello studio CHIMIE Srl, Dott. F. Gungolo come da verbale nº 94/10

RISULTATI

PARAMETRO	unità di misura	valore determinato	D. Lgs. 152/06 Tab. 2 allegato 5 alla parte IV Titolo V
pH		7,09	
Metodo di analisi di riferimento: UNI EN ISO 10523:2012		•	'
limite di quantificazione: > 1 e < 13		incertezza: ±	0,12
Temperatura	°C	19,6	
Metodo di analisi di riferimento: APAT CNR IRSA 2100 Man 29 2003		•	-
limite di quantificazione: 1		incertezza: ±	0,2
Ossigeno disciolto	mg/l	5,31	
Metodo di analisi di riferimento: Strumentale - Sensore di Ossigeno Disciolto a luminescenza LDO		,	
limite di quantificazione: 0,5		incertezza: ±	0,53
Potenziale Redox	mV	180,2	
Metodo di analisi di riferimento: Strumentale - Sensore ORP			'
limite di quantificazione: 10		incertezza: ±	18,0
Conducibilità	uS/cm a 20 °C	3540	
Metodo di analisi di riferimento: UNI EN 27888:1995			' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '
limite di quantificazione: 10		incertezza: ±	71
1.1 - Dicloroetilene	μg/l	0,153	0,05
Metodo di analisi di riferimento: UNI EN ISO 15680:2005		,	
limite di quantificazione: 0,005		incertezza: ±	0,023
1,2 - Dicloropropano	μg/l	0,012	0,15
Metodo di analisi di riferimento: UNI EN ISO 15680:2005	. 0	-,,,	<u> </u>
limite di quantificazione: 0,01		incertezza: ±	0,002

Note

L'incertezza di misura riportata nel presente certificato di analisi è espressa come incertezza estesa con un fattore di copertura (k) pari a 2 corrispondente a un livello di fiducia di circa 95%.

I risultati delle analisi si riferiscono ESCLUSIVAMENTE al campione esaminato; si declina ogni responsabilità nei casi di utilizzo del presente atto in difformità agli usi consentiti dalla Legge. Le analisi da eseguire sono state commissionate dal committente e dunque si declina ogni responsabilità in merito alla completezza delle informazioni.

Le analisi sono state eseguite dalla CHIMIE Srl e i LABORATORI ANALISI CHIMICHE DOTT. ADRIANO GIUSTO - SERVIZI AMBIENTE S.R.L., accreditato al n. 0128L, del gruppo LIFEANALYTICS.

IL CHIMICO

Laboratorio Analisi Chimiche Dott. A. Giusto Servizi Ambiente S.r.I. - Chimie S.r.I. Gruppo LIFEANALYTICS

Ordine dei CHIMICI e dei FISICI della Prov. di Treviso n° A093 Codice Fiscale GSTDRN42R12H823B P.IVA 01627660267 Via Pírzio Biroli n.1 - 31046 ODERZO (TV)

Triggiano, 30 ottobre 2020

Certificato n° 20Cl00313

CERTIFICATO ANALISI

(valido a tutti gli effetti come da D. L. nº 842/28)

COMMITTENTE: FORMICA AMBIENTE srl - Via Groenlandia 47 - Roma

ETICHETTA: Campione di acqua di falda prelevato dal pozzo n° **4** della discarica per rifiuti non pericolosi sita in c.da Formica (BR)

Data ricezione campione: 26/10/20 Profondità della falda: 43,6 m

Il campione è stato prelevato dal tecnico dello studio CHIMIE Srl, Dott. F. Gungolo come da verbale nº 94/10

RISULTATI

PARAMETRO	unità di misura	valore determinato	D. Lgs. 152/06 Tab. 2 allegato 5 alla parte IV Titolo V
pH		7,15	
Metodo di analisi di riferimento: UNI EN ISO 10523:2012			
limite di quantificazione: > 1 e < 13		incertezza: ±	0,12
Temperatura	°C	20,1	
Metodo di analisi di riferimento: APAT CNR IRSA 2100 Man 29 2003			
limite di quantificazione: 1		incertezza: ±	0,2
Ossigeno disciolto	mg/l	5,15	
Metodo di analisi di riferimento: Strumentale - Sensore di Ossigeno Disciolto a luminescenza LDO		,	
limite di quantificazione: 0,5		incertezza: ±	0,52
Potenziale Redox	mV	128,6	
Metodo di analisi di riferimento: Strumentale - Sensore ORP			
limite di quantificazione: 10		incertezza: ±	12,9
Conducibilità	uS/cm a 20 °C	3290	
Metodo di analisi di riferimento: UNI EN 27888:1995			· · · · · · · · · · · · · · · · · · ·
limite di quantificazione: 10		incertezza: ±	66
1.1 - Dicloroetilene	μg/l	0,048	0,05
Metodo di analisi di riferimento: UNI EN ISO 15680:2005		.,.	
limite di quantificazione: 0,005		incertezza: ±	0,007
1,2 - Dicloropropano	μg/l	< 0,01	0,15
Metodo di analisi di riferimento: UNI EN ISO 15680:2005		-,	<u> </u>
limite di quantificazione: 0,01		incertezza:	

Note:

L'incertezza di misura riportata nel presente certificato di analisi è espressa come incertezza estesa con un fattore di copertura (k) pari a 2 corrispondente a un livello di fiducia di circa 95%.

I risultati delle analisi si riferiscono ESCLUSIVAMENTE al campione esaminato; si declina ogni responsabilità nei casi di utilizzo del presente atto in difformità agli usi consentiti dalla Legge. Le analisi da eseguire sono state commissionate dal committente e dunque si declina ogni responsabilità in merito alla completezza delle informazioni.

Le analisi sono state eseguite dalla CHIMIE Srl e i LABORATORI ANALISI CHIMICHE DOTT. ADRIANO GIUSTO - SERVIZI AMBIENTE S.R.L., accreditato al n. 0128L, del gruppo LIFEANALYTICS.

IL CHIMICO

Laboratorio Analisi Chimiche Dott. A. Giusto Servizi Ambiente S.r.I. - Chimie S.r.I. Gruppo LIFEANALYTICS

Ordîne dei CHIMICI e dei FISICI della Prov. di Treviso nº A093 Codice Fiscale GSTDRN42R12H823B P.IVA 01627660267 Via Pirzio Biroli n.1 - 31046 ODERZO (TV)

Triggiano, 30 ottobre 2020

Certificato n° 20Cl00311

CERTIFICATO ANALISI

(valido a tutti gli effetti come da D. L. nº 842/28)

COMMITTENTE: FORMICA AMBIENTE srl - Via Groenlandia 47 - Roma

ETICHETTA: Campione di acqua di falda prelevato dallo scarico **TAF** della discarica per rifiuti non pericolosi sita in c.da Formica (BR)

Data ricezione campione: 26/10/20

Il campione è stato prelevato dal tecnico dello studio CHIMIE Srl, Dott. F. Gungolo come da verbale nº 94/10

RISULTATI

PARAMETRO	unità di misura	valore determinato	D. Lgs. 152/06 Tab. 2 allegato 5 alla parte IV Titolo V
pH		7,23	
Metodo di analisi di riferimento: UNI EN ISO 10523:2012			•
limite di quantificazione: > 1 e < 13		incertezza: ±	0,12
Temperatura	°C	20,3	
Metodo di analisi di riferimento: APAT CNR IRSA 2100 Man 29 2003			ļ.
limite di quantificazione: 1		incertezza: ±	0,2
Ossigeno disciolto	mg/l	6,92	
Metodo di analisi di riferimento: Strumentale - Sensore di Ossigeno Disciolto a luminescenza LDO		•	
limite di quantificazione: 0,5		incertezza: ±	0,69
Potenziale Redox	mV	160,3	
Metodo di analisi di riferimento: Strumentale - Sensore ORP		-	!
limite di quantificazione: 10		incertezza: ±	16,0
Conducibilità	uS/cm a 20 °C	3550	
Metodo di analisi di riferimento: UNI EN 27888:1995			<u> </u>
limite di quantificazione: 10		incertezza: ±	71
1,1 - Dicloroetilene	μg/l	< 0,005	0,05
Metodo di analisi di riferimento: UNI EN ISO 15680:2005		•	
limite di quantificazione: 0,005		incertezza:	
1,2 - Dicloropropano	μg/l	< 0,01	0,15
Metodo di analisi di riferimento: UNI EN ISO 15680:2005		-,	
limite di quantificazione: 0,01		incertezza:	

Note

L'incertezza di misura riportata nel presente certificato di analisi è espressa come incertezza estesa con un fattore di copertura (k) pari a 2 corrispondente a un livello di fiducia di circa 95%.

I risultati delle analisi si riferiscono ESCLUSIVAMENTE al campione esaminato; si declina ogni responsabilità nei casi di utilizzo del presente atto in difformità agli usi consentiti dalla Legge. Le analisi da eseguire sono state commissionate dal committente e dunque si declina ogni responsabilità in merito alla completezza delle informazioni.

Le analisi sono state eseguite dalla CHIMIE Srl e i LABORATORI ANALISI CHIMICHE DOTT. ADRIANO GIUSTO - SERVIZI AMBIENTE S.R.L., accreditato al n. 0128L, del gruppo LIFEANALYTICS.

IL CHIMICO

Laboratorio Analisi Chimiche Dott. A. Giusto Servizi Ambiente S.r.I. - Chimie S.r.I. Gruppo LIFEANALYTICS

Ordine dei CHIMICI e dei FISICI della Prov. di Treviso n° A093 Codice Fiscale GSTDRN42R12H823B P.IVA 01627660267 Via Pirzio Biroli n.1 - 31046 ODERZO (TV)

Triggiano, 30 ottobre 2020

Certificato n° 20Cl00311

CERTIFICATO ANALISI

(valido a tutti gli effetti come da D. L. nº 842/28)

COMMITTENTE: FORMICA AMBIENTE srl - Via Groenlandia 47 - Roma

ETICHETTA: Campione di acqua di falda prelevato dal pozzo n° PE1 della discarica per rifiuti non pericolosi sita in c.da Formica (BR)

Data ricezione campione: 26/10/20 Profondità della falda: 44,5 m

Il campione è stato prelevato dal tecnico dello studio CHIMIE Srl, Dott. F. Gungolo come da verbale nº 94/10

RISULTATI

PARAMETRO	unità di misura	valore determinato	D. Lgs. 152/06 Tab. 2 allegato alla parte IV Titolo V
pH		7,22	
Metodo di analisi di riferimento: UNI EN ISO 10523:2012			•
limite di quantificazione: > 1 e < 13		incertezza: ±	0,12
Temperatura	°C	19,2	
Metodo di analisi di riferimento: APAT CNR IRSA 2100 Man 29 2003			ļ l
limite di quantificazione: 1		incertezza: ±	0,2
Ossigeno disciolto	mg/l	4,86	
Metodo di analisi di riferimento: Strumentale - Sensore di Ossigeno Disciolto a luminescenza LDO		•	ļ ļ
limite di quantificazione: 0,5		incertezza: ±	0,49
Potenziale Redox	mV	166,3	
Metodo di analisi di riferimento: Strumentale - Sensore ORP			<u>'</u>
limite di quantificazione: 10		incertezza: ±	16,6
Conducibilità	uS/cm a 20 °C	3570	
Metodo di analisi di riferimento: UNI EN 27888:1995			
limite di quantificazione: 10		incertezza: ±	71
1.1 - Dicloroetilene	μg/l	0,422	0,05
Metodo di analisi di riferimento: UNI EN ISO 15680:2005		•	l l
limite di quantificazione: 0,005		incertezza: ±	0,063
1,2 - Dicloropropano	μg/l	0,048	0,15
Metodo di analisi di riferimento: UNI EN ISO 15680:2005		2,310	1 "
limite di quantificazione: 0,01		incertezza: ±	0,007

Note

L'incertezza di misura riportata nel presente certificato di analisi è espressa come incertezza estesa con un fattore di copertura (k) pari a 2 corrispondente a un livello di fiducia di circa 95%.

I risultati delle analisi si riferiscono ESCLUSIVAMENTE al campione esaminato; si declina ogni responsabilità nei casi di utilizzo del presente atto in difformità agli usi consentiti dalla Legge. Le analisi da eseguire sono state commissionate dal committente e dunque si declina ogni responsabilità in merito alla completezza delle informazioni.

Le analisi sono state eseguite dalla CHIMIE Srl e i LABORATORI ANALISI CHIMICHE DOTT. ADRIANO GIUSTO - SERVIZI AMBIENTE S.R.L., accreditato al n. 0128L, del gruppo LIFEANALYTICS.

IL CHIMICO

Laboratorio Analisi Chimiche Dott. A. Giusto Servizi Ambiente S.r.I. - Chimie S.r.I. Gruppo LIFEANALYTICS

Ordine dei CHIMICI e dei FISICI della Prov. di Treviso n° A093 Codice Fiscale GSTDRN42R12H823B P.IVA 01627660267 Via Pirzio Biroli n.1 - 31046 ODERZO (TV)

Triggiano, 30 ottobre 2020

Certificato n° 20CI00310

CERTIFICATO ANALISI

(valido a tutti gli effetti come da D. L. nº 842/28)

COMMITTENTE: FORMICA AMBIENTE srl - Via Groenlandia 47 - Roma

ETICHETTA: Campione di acqua di falda prelevato dal pozzo n° PE2 della discarica per rifiuti non pericolosi sita in c.da Formica (BR)

Data ricezione campione: 26/10/20 Profondità della falda: 44,2 m

Il campione è stato prelevato dal tecnico dello studio CHIMIE Srl, Dott. F. Gungolo come da verbale nº 94/10

RISULTATI

PARAMETRO	unità di misura	valore determinato	D. Lgs. 152/0 Tab. 2 allegato alla parte IV Titolo V
pH		7,09	
Metodo di analisi di riferimento: UNI EN ISO 10523:2012			
limite di quantificazione: > 1 e < 13		incertezza: ±	0,12
Temperatura	°C	19,8	
Metodo di analisi di riferimento: APAT CNR IRSA 2100 Man 29 2003			
limite di quantificazione: 1		incertezza: ±	0,2
Ossigeno disciolto	mg/l	4,41	
Metodo di analisi di riferimento: Strumentale - Sensore di Ossigeno Disciolto a luminescenza LDO		•	
limite di quantificazione: 0,5		incertezza: ±	0,44
Potenziale Redox	mV	170,9	
Metodo di analisi di riferimento: Strumentale - Sensore ORP		-	!
limite di quantificazione: 10		incertezza: ±	17,1
Conducibilità	uS/cm a 20 °C	3580	
Metodo di analisi di riferimento: UNI EN 27888:1995			
limite di quantificazione: 10		incertezza: ±	71,6
1.1 - Dicloroetilene	μg/l	0,062	0,05
Metodo di analisi di riferimento: UNI EN ISO 15680:2005		•	
limite di quantificazione: 0,005		incertezza: ±	0,009
1,2 - Dicloropropano	μg/l	0,030	0,15
Metodo di analisi di riferimento: UNI EN ISO 15680:2005		2,300	
limite di quantificazione: 0,01		incertezza: ±	0,005

Note

L'incertezza di misura riportata nel presente certificato di analisi è espressa come incertezza estesa con un fattore di copertura (k) pari a 2 corrispondente a un livello di fiducia di circa 95%.

I risultati delle analisi si riferiscono ESCLUSIVAMENTE al campione esaminato; si declina ogni responsabilità nei casi di utilizzo del presente atto in difformità agli usi consentiti dalla Legge. Le analisi da eseguire sono state commissionate dal committente e dunque si declina ogni responsabilità in merito alla completezza delle informazioni.

Le analisi sono state eseguite dalla CHIMIE Srl e i LABORATORI ANALISI CHIMICHE DOTT. ADRIANO GIUSTO - SERVIZI AMBIENTE S.R.L., accreditato al n. 0128L, del gruppo LIFEANALYTICS.

IL CHIMICO

Laboratorio Analisi Chimiche Dott. A. Giusto Servizi Ambiente S.r.I. - Chimie S.r.I. Gruppo LIFEANALYTICS

Ordine dei CHIMICI e dei FISICI della Prov. di Treviso n° A093 Codice Fiscale GSTDRN42R12H823B P.IVA 01627660267 Via Pírzio Biroli n.1 - 31046 ODERZO (TV)

Triggiano, 30 ottobre 2020

Certificato n° 20CI00309

CERTIFICATO ANALISI

(valido a tutti gli effetti come da D. L. nº 842/28)

COMMITTENTE: FORMICA AMBIENTE srl - Via Groenlandia 47 - Roma

ETICHETTA: Campione di acqua di falda prelevato dal pozzo n° PR2 della discarica per rifiuti non pericolosi sita in c.da Formica (BR)

Data ricezione campione: 26/10/20 Profondità della falda: 36,5 m

Il campione è stato prelevato dal tecnico dello studio CHIMIE Srl, Dott. F. Gungolo come da verbale nº 94/10

RISULTATI

PH Metodo di analisi di riferimento: UNI EN ISO 10523:2012 limite di quantificazione: > 1 e < 13 Temperatura Metodo di analisi di riferimento: APAT CNR IRSA 2100 Man 29 2003 limite di quantificazione: 1	°C	7,39 incertezza: ± 0	,12
limite di quantificazione: > 1 e < 13 Temperatura Metodo di analisi di riferimento: APAT CNR IRSA 2100 Man 29 2003 limite di quantificazione: 1	°C		,12
Temperatura Metodo di analisi di riferimento: APAT CNR IRSA 2100 Man 29 2003 limite di quantificazione: 1	°C		,12
Metodo di analisi di riferimento: APAT CNR IRSA 2100 Man 29 2003 limite di quantificazione: 1	°C	20,5	
Metodo di analisi di riferimento: APAT CNR IRSA 2100 Man 29 2003 limite di quantificazione: 1			
·		•	
		incertezza: ± 0	,2
Ossigeno disciolto	mg/l	9,15	
Metodo di analisi di riferimento: Strumentale - Sensore di Ossigeno Disciolto a luminescenza LDO		•	!
limite di quantificazione: 0,5		incertezza: ± 0	,92
Potenziale Redox	mV	106,9	
Metodo di analisi di riferimento: Strumentale - Sensore ORP		'	'
limite di quantificazione: 10		incertezza: ± 1	0,7
Conducibilità	uS/cm a 20 °C	3570	
Metodo di analisi di riferimento: UNI EN 27888:1995		· ·	'
limite di quantificazione: 10		incertezza: ± 7	1,4
1,1 - Dicloroetilene	μg/l	< 0,005	0,05
Metodo di analisi di riferimento: UNI EN ISO 15680:2005		,	
limite di quantificazione: 0,005		incertezza:	
1,2 - Dicloropropano	μg/l	< 0,01	0,15
Metodo di analisi di riferimento: UNI EN ISO 15680:2005		-,5.	1
limite di quantificazione: 0,01		incertezza:	

Note:

L'incertezza di misura riportata nel presente certificato di analisi è espressa come incertezza estesa con un fattore di copertura (k) pari a 2 corrispondente a un livello di fiducia di circa 95%.

I risultati delle analisi si riferiscono ESCLUSIVAMENTE al campione esaminato; si declina ogni responsabilità nei casi di utilizzo del presente atto in difformità agli usi consentiti dalla Legge. Le analisi da eseguire sono state commissionate dal committente e dunque si declina ogni responsabilità in merito alla completezza delle informazioni.

Le analisi sono state eseguite dalla CHIMIE Srl e i LABORATORI ANALISI CHIMICHE DOTT. ADRIANO GIUSTO - SERVIZI AMBIENTE S.R.L., accreditato al n. 0128L, del gruppo LIFEANALYTICS.

IL CHIMICO

Laboratorio Analisi Chimiche Dott. A. Giusto Servizi Ambiente S.r.I. - Chimie S.r.I. Gruppo LIFEANALYTICS

Ordîne dei CHÎMICI e dei FISICI della Prov. di Treviso n° A093 Codice Fiscale GSTDRN42R12H823B P.IVA 01627660267 Via Pirzio Bíroli n.1 - 31046 ODTRZO (TV)

Triggiano, 30 ottobre 2020

Certificato n° 20CI00308

CERTIFICATO ANALISI

(valido a tutti gli effetti come da D. L. nº 842/28)

COMMITTENTE: FORMICA AMBIENTE srl - Via Groenlandia 47 - Roma

ETICHETTA: Campione di acqua di falda prelevato dal pozzo n° V2 della discarica per rifiuti non pericolosi sita in c.da Formica (BR)

Data ricezione campione: 26/10/20 Profondità della falda: 40,2 m

Il campione è stato prelevato dal tecnico dello studio CHIMIE Srl, Dott. F. Gungolo come da verbale nº 94/10

RISULTATI

PARAMETRO	unità di misura	valore determinato	D. Lgs. 152/06 Tab. 2 allegato 5 alla parte IV Titolo V
рН		7,13	
Metodo di analisi di riferimento: UNI EN ISO 10523:2012			
limite di quantificazione: > 1 e < 13		incertezza: ±	0,12
Temperatura	°C	19,8	
Metodo di analisi di riferimento: APAT CNR IRSA 2100 Man 29 2003			
limite di quantificazione: 1		incertezza: ±	0,2
Ossigeno disciolto	mg/l	4,51	
Metodo di analisi di riferimento: Strumentale - Sensore di Ossigeno Disciolto a luminescenza LDO			· · · · · · · · · · · · · · · · · · ·
limite di quantificazione: 0,5		incertezza: ±	0,45
Potenziale Redox	mV	166,6	
Metodo di analisi di riferimento: Strumentale - Sensore ORP			· · · · · · · · · · · · · · · · · · ·
limite di quantificazione: 10		incertezza: ±	16,7
Conducibilità	uS/cm a 20 °C	2580	
Metodo di analisi di riferimento: UNI EN 27888:1995			1
limite di quantificazione: 10		incertezza: ±	52
1,1 - Dicloroetilene	μg/l	< 0,005	0,05
Metodo di analisi di riferimento: UNI EN ISO 15680:2005		,	l l
limite di quantificazione: 0,005		incertezza:	
1,2 - Dicloropropano	μg/l	< 0,01	0,15
1,2 - Dicloropropano Metodo di analisi di riferimento: UNI EN ISO 15680:2005	μg/l	< 0,01	0,15

Note

L'incertezza di misura riportata nel presente certificato di analisi è espressa come incertezza estesa con un fattore di copertura (k) pari a 2 corrispondente a un livello di fiducia di circa 95%.

I risultati delle analisi si riferiscono ESCLUSIVAMENTE al campione esaminato; si declina ogni responsabilità nei casi di utilizzo del presente atto in difformità agli usi consentiti dalla Legge. Le analisi da eseguire sono state commissionate dal committente e dunque si declina ogni responsabilità in merito alla completezza delle informazioni.

Le analisi sono state eseguite dalla CHIMIE Srl e i LABORATORI ANALISI CHIMICHE DOTT. ADRIANO GIUSTO - SERVIZI AMBIENTE S.R.L., accreditato al n. 0128L, del gruppo LIFEANALYTICS.

IL CHIMICO

Laboratorio Analisi Chimiche Dott. A. Giusto Servizi Ambiente S.r.I. - Chimie S.r.I. Gruppo LIFEANALYTICS

MR-07-01 VERBALE DI PRELIEVO CAMPIONI

Rev 3 del 20/01/17

N° Verbale di prelievo : 54	IM			
Data: 23. 11.2020 Ora: 8,30 Condiz				
Nome prelevatore: G. CIPRIANC)			
Qualifica prelevatore: porเจ care	(100			
Procedura di campionamento e trasporto:	ISO 5667-11 ed APAT CNR IRSA n° 1030			
Cliente: FORMICA AMBIENTE Srl – Discario	a per rifiuti non pericolosi.			
Indirizzo luogo di campionamento: C.da Fe	ormica – Brindisi.			
Descrizione Campione: Monitoraggio Acque	e di falda			
Punto di prelievo: ocquo di falola	P8.04 208			
Etichetta Campione:				
PZ <u>04</u> Τ <u>20,6</u> °C; P <u>43,54</u> m; O _{2disc.} <u>9,33</u> m	ng/l; ORP <u>20ς Σ</u> mV; pH <u>7, {0</u> ; Cond. <u>2880</u> μS/cm			
PZ 08 T 70,6 °C; P 41,69 m; O2disc. 4,18 m	ng/l; ORP <u>164,5</u> mV; pH <u>7,16</u> ; Cond. <u>3,470</u> µS/cm			
PZ T °C; P m; O2disc. m	ng/l; ORP mV; pH; Cond μS/cm			
PZ T°C: P m; O2disc m	ng/l; ORPmV; pH; CondµS/cm			
PZ T°C; P m; O2disc m				
PZ °C; Pm; O2discm				
PZ T °C; P m; O _{2disc} . m T °C; P m; O _{2disc} . m	g/l; ORP mV; pH; Cond μS/cm			
T°C; Pm; O _{2disc} m	g/l; ORP mV; pH; Cond µS/cm			
Note : Prima di ogni campionamento è stato effett Le quantità e le modalità di conservazione delle riportato nel manuale APAT CNR IRSA n° 1030 M	e aliquote campionate sono conformi a quanto			
Sono stati prelevati n° campioni da	€ O It in contenitori in polietilene; n° _ O ↓			
campioni da $\underline{\mathcal{A}_{\mathcal{L}}\mathcal{O}_{-}}$ lt in contenitori in vetro scul				
batteriologica, n° <u>०५</u> vials in vetro scuro da 40।	ml.			
PROVE RICHIESTE	METODICA			
Come da vs commessa nº 0190/16	Come da vs commessa nº 0190/16			
	<i>A</i>			
Firma del Prelevatore:				
Firma e Timbro	o dell'Azienda: Molecularia dell'Azienda: Molecularia dell'Azienda: Molecularia dell'Azienda: Molecularia dell'			

MR-07-01 VERBALE DI PRELIEVO CAMPIONI

Rev 3 del 20/01/17

N° Verbale di prelievo :	6/11			
	dizioni ambientali: <u>ルリリのとの</u> s <u>の</u>			
Nome prelevatore: G. CIPRI	ANO			
Qualifica prelevatore: PERITO C	HIMICO			
Procedura di campionamento e traspor	to: ISO 5667-11 ed APAT CNR IRSA n° 1030			
Cliente: FORMICA AMBIENTE Srl, discar	ica per rifiuti non pericolosi.			
Indirizzo luogo di campionamento: C.da	a Formica – Brindisi.			
Descrizione Campione: monitoraggio ac	que di falda			
Punto di prelievo: Pa 4A - 5A				
Etichetta Campione:				
PZ 4A T 27, 2°C; P 43, 52m; O2disc. 4, Q	mg/l; ORP 245 , mV; pH 6 , 98; Cond. 3310 μ S/cn			
PZ 5A T 21,3 °C; P44,32 m; O2disc. 5,0	O mg/l; ORP 233, 4 mV; pH 7,07; Cond. 3470 µS/cn			
PZ T°C; Pm; O _{2disc.}	mg/l; ORPmV; pH; CondμS/cn			
PZ T°C; P m; O _{2disc}	mg/l; ORPmV; pH; ConduS/cn			
PZ T°C; Pm; O _{2disc.}	mg/l; ORPmV; pH; CondµS/cn			
PZ T °C; P m; O _{2disc.}	mg/l; ORPmV; pH; CondμS/cn			
PZ T°C; P m; O _{2disc.}	mg/l; ORPmV; pH; CondµS/cn			
PZ	mg/l; ORP mV; pH; CondμS/cn			
PZ T°C; P m; O2disc	mg/l; ORPmV; pH; CondμS/cn			
Note : Prima di ogni campionamento è stato el Le quantità e le modalità di conservazione di riportato nel manuale APAT CNR IRSA n° 103	delle aliquote campionate sono conformi a quanto			
Sono stati prelevati n° <u>O</u> d campioni da <u>A</u> O lt in contenitori in polietilene; n° <u>O</u> d campioni da <u>A</u> O lt in contenitori in vetro scuro; n° <u>C</u> contenitori sterili da 100cc per la batteriologica, n° <u>O</u> d vials in vetro scuro da 40 ml per campiuone.				
PROVE RICHIESTE	METODICA			
Come da vs commessa nº 0190/16	Come da vs commessa nº 0190/16			
<i>y</i>				

Firma del Prelevatore:

Firma del Prelevatore:

MR-07-01 VERBALE DI PRELIEVO CAMPIONI

Rev 3 del 20/01/17

N° Verbale di prelievo :	57/11
Data: 24.11.2020 Ora: 11,00 Coi	ndizioni ambientali: NUVOLOSO
Nome prelevatore: G. CIPRIA	
Qualifica prelevatore: PERITO CA	
Procedura di campionamento e traspo	rto: ISO 5667-11 ed APAT CNR IRSA n° 1030
Cliente: FORMICA AMBIENTE Srl -	Discarica per rifiuti non pericolosi sita in c.da
Formica (BR)	
Indirizzo luogo di campionamento: c.d	la Formica – Brindisi.
Descrizione Campione: Monitoraggio A	cque di falda
Punto di prelievo: Pe. PR9 9 -	TAF (SCARICO)
Etichetta Campione: 🛷 🗥 🗥 👢	461
PZPR2T 19,4°C; P 35,83 m; O2disc. 11,	2 mg/l; ORP 2/6,9 mV; pH 7,42; Cond. 3370 μS/cm
PETAFT 19,1 °C; P / m; O2disc. 6,6	9 C(mg/l; ORP 23 %4 mV; pH 7 49; Cond. 33 40 µS/cm
PZ T°C; P m; O2disc	mg/l; ORPmV; pH; CondμS/cm
PZT°C; Pm; O _{2disc}	mg/l; ORPmV; pH; CondµS/cm
	mg/l; ORP mV; pH ; Cond. µS/cm
PZTC; Pm; O _{2disc.}	mg/l; ORPmV; pH; CondμS/cm
PZ°C; Pm; O _{2disc.}	mg/l; ORPmV; pH; CondµS/cm
PZ T°C; P m; O _{2disc.}	mg/l; ORP mV; pH; CondμS/cm
Note: Prima di ogni campionamento è stato	effettuato lo spurgo con tecnica low-flow.
Le quantità e le modalità di conservazione	delle aliquote campionate sono conformi a quanto
riportato nel manuale APAT CNR IRSA nº 10	30 Man 29/2003.
Sono stati prelevati n° / campioni d	daIt in contenitori in polietilene; n°
	scuro; n contenitori sterili da 100cc per la
batteriologica, n° <u>03</u> vials in vetro scuro d	
DDOVE DICHIESTE	METODICA
PROVE RICHIESTE Come da vs commessa n° 0002/18	Come da vs commessa nº 0002/18
	the contact contact to the contact t
Eirma dal	Prelevatore:
Filmia dei	TIGIGVALUIG.
Firms o Ti	imbro doll'Azionda:

Ordine dei CHIMICI e dei FISICI della Prov. di Treviso nº A093 Codice Fiscale GSTDRN42R12H823B P.IVA 01627660267 Via Pirzio Biroli n.1 - 31046 ODERZO (TV)

Triggiano, 15 dicembre 2020

Certificato n° 20Cl00473

$\mathsf{E} \mathsf{R} \mathsf{T}$

(valido a tutti gli effetti come da D. L. nº 842/28)

COMMITTENTE: CAVED Srl, C.da Formica - Brindisi

ETICHETTA: Campione di acqua di falda prelevato dal pozzo C della CAVED Srl sita in c.da Formica (BR)

Data ricezione campione: 26/11/20 Profondità della falda: 41,5 m

Il campione è stato prelevato dal tecnico dello studio CHIMIE Srl, Dott. F. Gungolo come da verbale n° 112/11

RISULTATI

PARAMETRO	unità di misura	valore determinato	D. Lgs. 152/06 Tab. 2 allegato 5 alla parte IV Titolo V
рН		7,18	
Metodo di analisi di riferimento: UNI EN ISO 10523:2012			'
limite di quantificazione: >1 e <13		incertezza: ±	0,12
Temperatura	°C	19,5	
Metodo di analisi di riferimento: APAT CNR IRSA 2100 Man 29 2003		•	!
limite di quantificazione: 1		incertezza: ±	0,2
Ossigeno disciolto	mg/l	5,23	
Metodo di analisi di riferimento: Strumentale - Sensore di Ossigeno Disciolto a luminescenza LDO			!
limite di quantificazione: 0,5		incertezza: ±	0,52
Potenziale Redox	mV	158,1	
Metodo di analisi di riferimento: Strumentale - Sensore ORP			· · ·
limite di quantificazione: 10		incertezza: ±	15,8
Conducibilità	uS/cm a 20 °C	3020	
Metodo di analisi di riferimento: UNI EN 27888:1995			
limite di quantificazione: 10		incertezza: ±	60
1,1 - Dicloroetilene	μg/l	< 0,005	0,05
Metodo di analisi di riferimento: UNI EN ISO 15680:2005		,	
limite di quantificazione: 0,005		incertezza:	
1,2 - Dicloropropano	μg/l	< 0,01	0,15
Metodo di analisi di riferimento: UNI EN ISO 15680:2005		•	!
limite di quantificazione: 0,01		incertezza:	

L'incertezza di misura riportata nel presente certificato di analisi è espressa come incertezza estesa con un fattore di copertura (k) pari a 2 corrispondente a un livello di

I risultati delle analisi si riferiscono ESCLUSIVAMENTE al campione esaminato; si declina ogni responsabilità nei casi di utilizzo del presente atto in difformità agli usi consentiti dalla Legge. Le analisi da eseguire sono state commissionate dal committente e dunque si declina ogni responsabilità in merito alla completezza delle

Le analisi sono state eseguite dalla Lifeanalytics S.r.l., accreditato al n. 0128L

Le analisi sono state commissionate ai laboratori del Gruppo LIFEANALYTICS

Lifeanalytics S.r.l.

www.lifeanalytics.it

servizioclienti@lifeanalytics.it

Laboratori Conformi alla norma UNI CEI EN ISO/IEC 17025:2018 Laboratori Certificati UNI EN ISO 9001:2015 e UNI EN ISO 14001:2015

Sede Triggiano - Tel. 0804621899 - info.chimie@lifeanalytics.it

Ordine dei CHIMICI e dei FISICI della Prov. di Treviso nº A093 Codice Fiscale GSTDRN42R12H823B P.IVA 01627660267 Via Pirzio Biroli n.1 - 31046 ODERZO (TV)

Triggiano, 15 dicembre 2020

Certificato n° 20Cl00472

CERTIFICATO ANALISI

(valido a tutti gli effetti come da D. L. nº 842/28)

COMMITTENTE: CAVED Srl, C.da Formica - Brindisi

ETICHETTA: Campione di acqua di falda prelevato dal pozzo B della CAVED Srl sita in c.da Formica (BR)

Data ricezione campione: 26/11/20 Profondità della falda: 41,3 m

Il campione è stato prelevato dal tecnico dello studio CHIMIE Srl, Dott. F. Gungolo come da verbale n° 112/11

RISULTATI

PARAMETRO	unità di misura	valore determinato	D. Lgs. 152/06 Tab. 2 allegato 5 alla parte IV Titolo V
pH		7,16	
Metodo di analisi di riferimento: UNI EN ISO 10523:2012		· ·	
limite di quantificazione: > 1 e < 13		incertezza: ± (0,12
Temperatura	°C	19,1	
Metodo di analisi di riferimento: APAT CNR IRSA 2100 Man 29 2003			
limite di quantificazione: 1		incertezza: ± (0,2
Ossigeno disciolto	mg/l	5,12	
Metodo di analisi di riferimento: Strumentale - Sensore di Ossigeno Disciolto a luminescenza LDO		•	
limite di quantificazione: 0,5		incertezza: ± (0,51
Potenziale Redox	mV	160,2	
Metodo di analisi di riferimento: Strumentale - Sensore ORP			
limite di quantificazione: 10		incertezza: ±	16,0
Conducibilità	uS/cm a 20 °C	3010	
Metodo di analisi di riferimento: UNI EN 27888:1995		'	
limite di quantificazione: 10		incertezza: ± (60
1,1 - Dicloroetilene	μg/l	< 0,005	0,05
Metodo di analisi di riferimento: UNI EN ISO 15680:2005		,	
limite di quantificazione: 0,005		incertezza:	
1,2 - Dicloropropano	μg/l	< 0,01	0,15
Metodo di analisi di riferimento: UNI EN ISO 15680:2005			'
limite di quantificazione: 0,01		incertezza:	

Note:

L'incertezza di misura riportata nel presente certificato di analisi è espressa come incertezza estesa con un fattore di copertura (k) pari a 2 corrispondente a un livello di fiducia di circa 95%.

I risultati delle analisi si riferiscono ESCLUSIVAMENTE al campione esaminato; si declina ogni responsabilità nei casi di utilizzo del presente atto in difformità agli usi consentiti dalla Legge. Le analisi da eseguire sono state commissionate dal committente e dunque si declina ogni responsabilità in merito alla completezza delle informazioni.

Le analisi sono state eseguite dalla Lifeanalytics S.r.l., accreditato al n. 0128L

Le analisi sono state commissionate ai laboratori del Gruppo LIFEANALYTICS

Lifeanalytics S.r.l.

www.lifeanalytics.it

servizioclienti@lifeanalytics.it

Laboratori Conformi alla norma UNI CEI EN ISO/IEC 17025:2018 Laboratori Certificati UNI EN ISO 9001:2015 e UNI EN ISO 14001:2015

Sede Triggiano - Tel. 0804621899 - info.chimie@lifeanalytics.it

Ordine dei CHIMICI e dei FISICI della Prov. di Treviso nº A093 Codice Fiscale GSTDRN42R12H823B P.IVA 01627660267 Via Pirzio Biroli n.1 - 31046 ODERZO (TV)

Triggiano, 15 dicembre 2020

Certificato n° 20Cl00471

CERTIFICATO ANALISI

(valido a tutti gli effetti come da D. L. nº 842/28)

COMMITTENTE: CAVED Srl, C.da Formica - Brindisi

ETICHETTA: Campione di acqua di falda prelevato dal pozzo A della CAVED Srl sita in c.da Formica (BR)

Data ricezione campione: 26/11/20 Profondità della falda: 39,5 m

Il campione è stato prelevato dal tecnico dello studio CHIMIE Srl, Dott. F. Gungolo come da verbale n° 112/11

RISULTATI

PARAMETRO	unità di misura	valore determinato	D. Lgs. 152/06 Tab. 2 allegato 5 alla parte IV Titolo V
рН		7,13	
Metodo di analisi di riferimento: UNI EN ISO 10523:2012			'
limite di quantificazione: >1 e <13		incertezza: ±	0,12
Temperatura	°C	19,6	
Metodo di analisi di riferimento: APAT CNR IRSA 2100 Man 29 2003		•	!
limite di quantificazione: 1		incertezza: ±	0,2
Ossigeno disciolto	mg/l	4,28	
Metodo di analisi di riferimento: Strumentale - Sensore di Ossigeno Disciolto a luminescenza LDO			!
limite di quantificazione: 0,5		incertezza: ±	0,43
Potenziale Redox	mV	188,9	
Metodo di analisi di riferimento: Strumentale - Sensore ORP			<u>'</u>
limite di quantificazione: 10		incertezza: ±	18,9
Conducibilità	uS/cm a 20 °C	2630	
Metodo di analisi di riferimento: UNI EN 27888:1995			
limite di quantificazione: 10		incertezza: ±	53
1,1 - Dicloroetilene	μg/l	< 0,005	0,05
Metodo di analisi di riferimento: UNI EN ISO 15680:2005		•	-
limite di quantificazione: 0,005		incertezza:	
1,2 - Dicloropropano	μg/l	< 0,01	0,15
Metodo di analisi di riferimento: UNI EN ISO 15680:2005		•	'
limite di quantificazione: 0,01		incertezza:	

Note:

L'incertezza di misura riportata nel presente certificato di analisi è espressa come incertezza estesa con un fattore di copertura (k) pari a 2 corrispondente a un livello di fiducia di circa 95%.

I risultati delle analisi si riferiscono ESCLUSIVAMENTE al campione esaminato; si declina ogni responsabilità nei casi di utilizzo del presente atto in difformità agli usi consentiti dalla Legge. Le analisi da eseguire sono state commissionate dal committente e dunque si declina ogni responsabilità in merito alla completezza delle informazioni.

Le analisi sono state eseguite dalla Lifeanalytics S.r.l., accreditato al n. 0128L

Le analisi sono state commissionate ai laboratori del Gruppo LIFEANALYTICS

Lifeanalytics S.r.l.

www.lifeanalytics.it

servizioclienti@lifeanalytics.it Laboratori Conformi alla norma UNI CEI EN ISO/IEC 17025:2018 Laboratori Certificati UNI EN ISO 9001:2015 e UNI EN ISO 14001:2015

Sede Triggiano - Tel. 0804621899 – info.chimie@lifeanalytics.it

Ordine dei CHIMICI e dei FISICI della Prov. di Treviso nº A093 Codice Fiscale GSTDRN42R12H823B P.IVA 01627660267 Via Pirzio Biroli n.1 - 31046 ODTRZO (TV)

Triggiano, 15 dicembre 2020

Certificato n° 20CI00470

CERTIFICATO ANALISI

(valido a tutti gli effetti come da D. L. nº 842/28)

COMMITTENTE: FORMICA AMBIENTE srl - Via Groenlandia 47 - Roma

ETICHETTA: Campione di acqua di falda prelevato dal pozzo n° PE2 della discarica per rifiuti non pericolosi sita in c.da Formica (BR)

Data ricezione campione: 26/11/20 Profondità della falda: 44 m

Il campione è stato prelevato dal tecnico dello studio CHIMIE Srl, Dott. F. Gungolo come da verbale nº 113/11

RISULTATI

PARAMETRO	unità di misura	valore determinato	D. Lgs. 152/06 Tab. 2 allegato 5 alla parte IV Titolo V
pH		7,15	
Metodo di analisi di riferimento: UNI EN ISO 10523:2012			
limite di quantificazione: > 1 e < 13		incertezza: ±	0,12
Temperatura	°C	19,6	
Metodo di analisi di riferimento: APAT CNR IRSA 2100 Man 29 2003		,	'
limite di quantificazione: 1		incertezza: ±	0,2
Ossigeno disciolto	mg/l	5,81	
Metodo di analisi di riferimento: Strumentale - Sensore di Ossigeno Disciolto a luminescenza LDO		,	
limite di quantificazione: 0,5		incertezza: ±	0,58
Potenziale Redox	mV	181,2	
Metodo di analisi di riferimento: Strumentale - Sensore ORP			'
limite di quantificazione: 10		incertezza: ±	18,1
Conducibilità	uS/cm a 20 °C	3360	
Metodo di analisi di riferimento: UNI EN 27888:1995			
limite di quantificazione: 10		incertezza: ±	67
1.1 - Dicloroetilene	μg/l	1,972	0,05
Metodo di analisi di riferimento: UNI EN ISO 15680:2005		,-	
limite di quantificazione: 0,005		incertezza: ±	0,296
1,2 - Dicloropropano	μg/l	0,105	0,15
Metodo di analisi di riferimento: UNI EN ISO 15680:2005	13	5,100	
limite di quantificazione: 0,01		incertezza: ±	0,016

Note

L'incertezza di misura riportata nel presente certificato di analisi è espressa come incertezza estesa con un fattore di copertura (k) pari a 2 corrispondente a un livello di fiducia di circa 95%.

I risultati delle analisi si riferiscono ESCLUSIVAMENTE al campione esaminato; si declina ogni responsabilità nei casi di utilizzo del presente atto in difformità agli usi consentiti dalla Legge. Le analisi da eseguire sono state commissionate dal committente e dunque si declina ogni responsabilità in merito alla completezza delle informazioni.

Le analisi sono state eseguite dalla Lifeanalytics S.r.l., accreditato al n. 0128L

Le analisi sono state commissionate ai laboratori del Gruppo LIFEANALYTICS

Lifeanalytics S.r.l.

www.lifeanalytics.it

servizioclienti@lifeanalytics.it Laboratori Conformi alla norma UNI CEI EN ISO/IEC 17025:2018 Laboratori Certificati UNI EN ISO 9001:2015 e UNI EN ISO 14001:2015

Sede Triggiano - Tel. 0804621899 - info.chimie@lifeanalytics.it

Ordine dei CHIMICI e dei FISICI della Prov. di Treviso nº A093 Codice Fiscale GSTDRN42R12H823B P.IVA 01627660267 Via Pirzio Biroli n.1 - 31046 ODERZO (TV)

Triggiano, 15 dicembre 2020

Certificato n° 20Cl00469

CERTIFICATO ANALISI

(valido a tutti gli effetti come da D. L. nº 842/28)

COMMITTENTE: FORMICA AMBIENTE srl - Via Groenlandia 47 - Roma

ETICHETTA: Campione di acqua di falda prelevato dal pozzo n° PE1 della discarica per rifiuti non pericolosi sita in c.da Formica (BR)

Data ricezione campione: 26/11/20 Profondità della falda: 44,5 m

Il campione è stato prelevato dal tecnico dello studio CHIMIE Srl, Dott. F. Gungolo come da verbale nº 113/11

RISULTATI

PARAMETRO	unità di misura	valore determinato	D. Lgs. 152/06 Tab. 2 allegato 5 alla parte IV Titolo V
pH		7,11	
Metodo di analisi di riferimento: UNI EN ISO 10523:2012			'
limite di quantificazione: > 1 e < 13		incertezza: ±	0,12
Temperatura	°C	19,2	
Metodo di analisi di riferimento: APAT CNR IRSA 2100 Man 29 2003		,	'
limite di quantificazione: 1		incertezza: ±	0,2
Ossigeno disciolto	mg/l	5,76	
Metodo di analisi di riferimento: Strumentale - Sensore di Ossigeno Disciolto a luminescenza LDO		,	
limite di quantificazione: 0,5		incertezza: ±	0,58
Potenziale Redox	mV	179,5	
Metodo di analisi di riferimento: Strumentale - Sensore ORP			'
limite di quantificazione: 10		incertezza: ±	18,0
Conducibilità	uS/cm a 20 °C	3340	
Metodo di analisi di riferimento: UNI EN 27888:1995			'
limite di quantificazione: 10		incertezza: ±	67
1.1 - Dicloroetilene	μg/l	0,185	0,05
Metodo di analisi di riferimento: UNI EN ISO 15680:2005		.,	
limite di quantificazione: 0,005		incertezza: ±	0,028
1,2 - Dicloropropano	μg/l	0,042	0,15
Metodo di analisi di riferimento: UNI EN ISO 15680:2005	1.5	-,	1
limite di quantificazione: 0,01		incertezza: ±	0,006

Note:

L'incertezza di misura riportata nel presente certificato di analisi è espressa come incertezza estesa con un fattore di copertura (k) pari a 2 corrispondente a un livello di fiducia di circa 95%.

I risultati delle analisi si riferiscono ESCLUSIVAMENTE al campione esaminato; si declina ogni responsabilità nei casi di utilizzo del presente atto in difformità agli usi consentiti dalla Legge. Le analisi da eseguire sono state commissionate dal committente e dunque si declina ogni responsabilità in merito alla completezza delle informazioni.

Le analisi sono state eseguite dalla Lifeanalytics S.r.l., accreditato al n. 0128L

Le analisi sono state commissionate ai laboratori del Gruppo LIFEANALYTICS

Lifeanalytics S.r.l.

www.lifeanalytics.it
servizioclienti@lifeanalytics.it
Laboratori Conformi alla norma UNI CEI EN ISO/IEC 17025:2018
Laboratori Certificati UNI EN ISO 9001:2015 e UNI EN ISO 14001:2015

Sede Triggiano - Tel. 0804621899 - info.chimie@lifeanalytics.it

Ordîne dei CHIMICI e dei FISICI della Prov. di Treviso nº A093 Codice Fiscale GSTDRN42R12H823B P.IVA 01627660267 Via Pirzio Biroli n.1 - 31046 ODERZO (TV)

Triggiano, 15 dicembre 2020

Certificato n° 20CI00468

CERTIFICATO ANALISI

(valido a tutti gli effetti come da D. L. nº 842/28)

COMMITTENTE: FORMICA AMBIENTE srl - Via Groenlandia 47 - Roma

ETICHETTA: Campione di acqua di falda prelevato dal pozzo n° PR1 della discarica per rifiuti non pericolosi sita in c.da Formica (BR)

Data ricezione campione: 25/11/20 Profondità della falda: 41,3 m

Il campione è stato prelevato dal tecnico dello studio CHIMIE Srl, P. Chim. G. Cipriano come da verbale n° 61/11

RISULTATI

PARAMETRO	unità di misura	valore determinato	D. Lgs. 152/06 Tab. 2 allegato 5 alla parte IV Titolo V
pH		7,50	
Metodo di analisi di riferimento: UNI EN ISO 10523:2012			
limite di quantificazione: > 1 e < 13		incertezza: ±	0,12
Temperatura	°C	19,7	
Metodo di analisi di riferimento: APAT CNR IRSA 2100 Man 29 2003			· · · · · · · · · · · · · · · · · · ·
limite di quantificazione: 1		incertezza: ±	0,2
Ossigeno disciolto	mg/l	9,98	
Metodo di analisi di riferimento: Strumentale - Sensore di Ossigeno Disciolto a luminescenza LDO		•	
limite di quantificazione: 0,5		incertezza: ±	1,00
Potenziale Redox	mV	114,1	
Metodo di analisi di riferimento: Strumentale - Sensore ORP			
limite di quantificazione: 10		incertezza: ±	11,4
Conducibilità	uS/cm a 20 °C	2650	
Metodo di analisi di riferimento: UNI EN 27888:1995			
limite di quantificazione: 10		incertezza: ±	53
1,1 - Dicloroetilene	μg/l	< 0,005	0,05
Metodo di analisi di riferimento: UNI EN ISO 15680:2005		,	
limite di quantificazione: 0,005		incertezza:	
1,2 - Dicloropropano	μg/l	< 0,01	0,15
Metodo di analisi di riferimento: UNI EN ISO 15680:2005		-,	
limite di quantificazione: 0,01		incertezza:	

Note

L'incertezza di misura riportata nel presente certificato di analisi è espressa come incertezza estesa con un fattore di copertura (k) pari a 2 corrispondente a un livello di fiducia di circa 95%.

I risultati delle analisi si riferiscono ESCLUSIVAMENTE al campione esaminato; si declina ogni responsabilità nei casi di utilizzo del presente atto in difformità agli usi consentiti dalla Legge. Le analisi da eseguire sono state commissionate dal committente e dunque si declina ogni responsabilità in merito alla completezza delle informazioni.

Le analisi sono state eseguite dalla Lifeanalytics S.r.l., accreditato al n. 0128L

Le analisi sono state commissionate ai laboratori del Gruppo LIFEANALYTICS

Lifeanalytics S.r.l.

www.lifeanalytics.it
servizioclienti@lifeanalytics.it
Laboratori Conformi alla norma UNI CEI EN ISO/IEC 17025:2018
Laboratori Certificati UNI EN ISO 9001:2015 e UNI EN ISO 14001:2015

Sede Triggiano - Tel. 0804621899 – info.chimie@lifeanalytics.it

Ordine dei CHIMICI e dei FISICI della Prov. di Treviso nº A093 Codice Fiscale GSTDRN42R12H823B P.IVA 01627660267 Via Pirzio Biroli n.1 - 31046 ODERZO (TV)

Triggiano, 15 dicembre 2020

Certificato n° 20CI00467

CERTIFICATO ANALISI

(valido a tutti gli effetti come da D. L. nº 842/28)

COMMITTENTE: FORMICA AMBIENTE srl - Via Groenlandia 47 - Roma

ETICHETTA: Campione di acqua di falda prelevato dal pozzo n° V2 della discarica per rifiuti non pericolosi sita in c.da Formica (BR)

Data ricezione campione: 25/11/20 Profondità della falda: 40,1 m

Il campione è stato prelevato dal tecnico dello studio CHIMIE Srl, P. Chim. G. Cipriano come da verbale n° 61/11

RISULTATI

PARAMETRO	unità di misura	valore determinato	D. Lgs. 152/06 Tab. 2 allegato 5 alla parte IV Titolo V
pH		6,97	
Metodo di analisi di riferimento: UNI EN ISO 10523:2012		•	•
limite di quantificazione: > 1 e < 13		incertezza: ±	0,12
Temperatura	°C	20,4	
Metodo di analisi di riferimento: APAT CNR IRSA 2100 Man 29 2003		•	-
limite di quantificazione: 1		incertezza: ±	0,2
Ossigeno disciolto	mg/l	1,68	
Metodo di analisi di riferimento: Strumentale - Sensore di Ossigeno Disciolto a luminescenza LDO		,	
limite di quantificazione: 0,5		incertezza: ±	0,17
Potenziale Redox	mV	217,9	
Metodo di analisi di riferimento: Strumentale - Sensore ORP			'
limite di quantificazione: 10		incertezza: ±	21,8
Conducibilità	uS/cm a 20 °C	2280	
Metodo di analisi di riferimento: UNI EN 27888:1995			
limite di quantificazione: 10		incertezza: ±	46
1.1 - Dicloroetilene	μg/l	< 0,005	0,05
Metodo di analisi di riferimento: UNI EN ISO 15680:2005		,,,,,,,	
limite di quantificazione: 0,005		incertezza:	
1,2 - Dicloropropano	μg/l	< 0,01	0,15
Metodo di analisi di riferimento: UNI EN ISO 15680:2005	1.5	-,01	' '
limite di quantificazione: 0,01		incertezza:	

Note:

L'incertezza di misura riportata nel presente certificato di analisi è espressa come incertezza estesa con un fattore di copertura (k) pari a 2 corrispondente a un livello di fiducia di circa 95%.

I risultati delle analisi si riferiscono ESCLUSIVAMENTE al campione esaminato; si declina ogni responsabilità nei casi di utilizzo del presente atto in difformità agli usi consentiti dalla Legge. Le analisi da eseguire sono state commissionate dal committente e dunque si declina ogni responsabilità in merito alla completezza delle informazioni.

Le analisi sono state eseguite dalla Lifeanalytics S.r.l., accreditato al n. 0128L

Le analisi sono state commissionate ai laboratori del Gruppo LIFEANALYTICS

Lifeanalytics S.r.l.

www.lifeanalytics.it
servizioclienti@lifeanalytics.it
Laboratori Conformi alla noma UNI CEI EN ISO/IEC 17025:2018
Laboratori Certificati UNI EN ISO 9001:2015 e UNI EN ISO 14001:2015

Sede Triggiano - Tel. 0804621899 - info.chimie@lifeanalytics.it

Ordine dei CHIMICI e dei FISICI della Prov. di Treviso n° A093 Codice Fiscale GSTDRN42R12H823B P.IVA 01627660267 Via Pirzio Biroli n.1 - 31046 ODERZO (TV)

Triggiano, 15 dicembre 2020

Certificato n° 20CI00466

CERTIFICATO ANALISI

(valido a tutti gli effetti come da D. L. nº 842/28)

COMMITTENTE: FORMICA AMBIENTE srl - Via Groenlandia 47 - Roma

ETICHETTA: Campione di acqua di falda prelevato dal pozzo n° V1 della discarica per rifiuti non pericolosi sita in c.da Formica (BR)

Data ricezione campione: 25/11/20 Profondità della falda: 40,6 m

Il campione è stato prelevato dal tecnico dello studio CHIMIE Srl, P. Chim. G. Cipriano come da verbale n° 61/11

RISULTATI

PARAMETRO	unità di misura	valore determinato	D. Lgs. 152/06 Tab. 2 allegato 5 alla parte IV Titolo V
pH		7,04	
Metodo di analisi di riferimento: UNI EN ISO 10523:2012		•	· · · · · · · · · · · · · · · · · · ·
limite di quantificazione: > 1 e < 13		incertezza: ±	0,12
Temperatura	°C	22,1	
Metodo di analisi di riferimento: APAT CNR IRSA 2100 Man 29 2003			<u>'</u>
limite di quantificazione: 1		incertezza: ±	0,2
Ossigeno disciolto	mg/l	4,40	
Metodo di analisi di riferimento: Strumentale - Sensore di Ossigeno Disciolto a luminescenza LDO		•	
limite di quantificazione: 0,5		incertezza: ±	0,44
Potenziale Redox	mV	89,2	
Metodo di analisi di riferimento: Strumentale - Sensore ORP			'
limite di quantificazione: 10		incertezza: ±	8,9
Conducibilità	uS/cm a 20 °C	3050	
Metodo di analisi di riferimento: UNI EN 27888:1995			
limite di quantificazione: 10		incertezza: ±	61
1.1 - Dicloroetilene	μg/l	< 0,005	0,05
Metodo di analisi di riferimento: UNI EN ISO 15680:2005		.,	
limite di quantificazione: 0,005		incertezza:	
1,2 - Dicloropropano	μg/l	< 0,01	0,15
Metodo di analisi di riferimento: UNI EN ISO 15680:2005		-,	'
limite di quantificazione: 0,01		incertezza:	

Note:

L'incertezza di misura riportata nel presente certificato di analisi è espressa come incertezza estesa con un fattore di copertura (k) pari a 2 corrispondente a un livello di fiducia di circa 95%.

I risultati delle analisi si riferiscono ESCLUSIVAMENTE al campione esaminato; si declina ogni responsabilità nei casi di utilizzo del presente atto in difformità agli usi consentiti dalla Legge. Le analisi da eseguire sono state commissionate dal committente e dunque si declina ogni responsabilità in merito alla completezza delle informazioni.

Le analisi sono state eseguite dalla Lifeanalytics S.r.l., accreditato al n. 0128L

Le analisi sono state commissionate ai laboratori del Gruppo LIFEANALYTICS

Lifeanalytics S.r.l.

www.lifeanalytics.it servizioclienti@lifeanalytics.it

Laboratori Conformi alla norma UNI CEI EN ISO/IEC 17025:2018
Laboratori Certificati UNI EN ISO 9001:2015 e UNI EN ISO 14001:2015

Sede Triggiano - Tel. 0804621899 – info.chimie@lifeanalytics.it

Ordine dei CHIMICI e dei FISICI della Prov. di Treviso n° A093 Codice Fiscale GSTDRN42R12H823B P.IVA 01627660267 Via Pirzio Biroli n.1 - 31046 ODERZO (TV)

Triggiano, 15 dicembre 2020

Certificato n° 20CI00465

CERTIFICATO ANALISI

(valido a tutti gli effetti come da D. L. n° 842/28)

COMMITTENTE: FORMICA AMBIENTE srl - Via Groenlandia 47 - Roma

ETICHETTA: Campione di acqua di falda prelevato dal pozzo n° **10** della discarica per rifiuti non pericolosi sita in c.da Formica (BR)

Data ricezione campione: 25/11/20 Profondità della falda: 44,2 m

Il campione è stato prelevato dal tecnico dello studio CHIMIE Srl, P. Chim. G. Cipriano come da verbale n° 60/11

RISULTATI

PARAMETRO	unità di misura	valore determinato	D. Lgs. 152/06 Tab. 2 allegato 5 alla parte IV Titolo V
рН		7,10	
Metodo di analisi di riferimento: UNI EN ISO 10523:2012			'
limite di quantificazione: > 1 e < 13		incertezza: ±	0,12
Temperatura	°C	20,3	
Metodo di analisi di riferimento: APAT CNR IRSA 2100 Man 29 2003			•
limite di quantificazione: 1		incertezza: ±	0,2
Ossigeno disciolto	mg/l	5,10	
Metodo di analisi di riferimento: Strumentale - Sensore di Ossigeno Disciolto a luminescenza LDO			
limite di quantificazione: 0,5		incertezza: ±	0,51
Potenziale Redox	mV	89,4	
Metodo di analisi di riferimento: Strumentale - Sensore ORP			·
limite di quantificazione: 10		incertezza: ±	8,9
Conducibilità	uS/cm a 20 °C	2760	
Metodo di analisi di riferimento: UNI EN 27888:1995			·
limite di quantificazione: 10		incertezza: ±	55
Ossidabilità O2	mg/l	0,60	
Metodo di analisi di riferimento: metodo Tritrimetrico (secondo Kubel), ISTISAN 07/31			
limite di quantificazione: 0,5		incertezza: ±	0,05
Domanda biochimica di ossigeno (BOD5) a 20°C senza nitrificazione	mgO ₂ /I	< 0,5	
Metodo di analisi di riferimento: APAT CNR IRSA 5120 Man 29 2003			1
limite di quantificazione: 0,5		incertezza:	
Carbonio organico totale (TOC)	mg/l	0,20	
Metodo di analisi di riferimento: APAT CNR IRSA 5040 Man 29 2003			
limite di quantificazione: 0,1		incertezza: ±	0,04

Ordine dei CHIMICI e dei FISICI della Prov. di Treviso n° A093 Codice Fiscale GSTDRN42R12H823B P.IVA 01627660267 Via Pirzio Biroli n.1 - 31046 ODERZO (TV)

Triggiano, 15 dicembre 2020

Certificato n° 20CI00465

CERTIFICATO ANALISI

Durezza totale	°F	58	
Metodo di analisi di riferimento: APAT CNR IRSA 2040 A Man 29 2003		ļ.	ļ.
limite di quantificazione: 5		incertezza: ± 1	
		T	,
ianuri	μg/l	< 1	50
Metodo di analisi di riferimento: APAT CNR IRSA 4070 Man 29 2003			
limite di quantificazione: 1		incertezza:	
luoruri	mg/l	0,33	1,5
Metodo di analisi di riferimento: UNI EN ISO 10304-1:2009	IIIg/I	0,33	1,5
limite di quantificazione: 0,1		incertezza: ± 0,03	
litriti come NO2	μg/l	< 50	500
Metodo di analisi di riferimento: UNI EN ISO 10304-1:2009			
limite di cuantificazione. EO		incortozza	
limite di quantificazione: 50		incertezza:	
olfati	mg/l	117	250
Metodo di analisi di riferimento: UNI EN ISO 10304-1:2009		+	· ·
limite di quantificazione: 0,1		incertezza: ± 12	
iiiilo ai quaniioazioto. Oji			
loruri	mg/l	757	
Metodo di analisi di riferimento: UNI EN ISO 10304-1:2009			
limite di quantificazione: 0,1		incertezza: ± 76	
litrati come NO3	mg/l	27	
Metodo di analisi di riferimento: UNI EN ISO 10304-1:2009	mg/i	21	
limite di quantificazione: 0,1		incertezza: ± 3	
mmoniaca come NH4	mg/l	< 0,05	
Metodo di analisi di riferimento: UNICHIM 2363:2009		.,	
limite di quantificazione. O OF		incertezza:	
limite di quantificazione: 0,05		incertezza:	
lluminio	μg/l	< 1	200
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016		1	•
limite di quantificazione: 1		incertezza:	
		1	
ntimonio	μg/l	< 0,3	5
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016			
limite di quantificazione: 0,3		incertezza:	
		- 4	
rgento Metodo di applici di riferimento: UNI ENUSO 17304 3:3016	µg/I	< 1	10
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016			
limite di quantificazione: 1		incertezza:	

Ordine dei CHIMICI e dei FISICI della Prov. di Treviso n° A093 Codice Fiscale GSTDRN42R12H823B P.IVA 01627660267 Via Pirzio Biroli n.1 - 31046 ODERZO (TV)

Triggiano, 15 dicembre 2020

Certificato n° 20CI00465

CERTIFICATO ANALISI

Arsenico		μg/l	< 1	10
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016				
limite d	i quantificazione: 1		incertezza:	
Pavia		//	27	1
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016		μg/l	27	
limite d	i quantificazione: 1		incertezza: ± 3	
Berillio		μg/l	< 0,3	4
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016				l .
limite d	i quantificazione: 0,3		incertezza:	
	. 444			
Boro		μg/l	178	1000
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016				
limite d	i quantificazione: 1		incertezza: ± 18	
Cadmio		//	- n 2	
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016		μg/l	< 0,3	5
limite d	i quantificazione: 0,3		incertezza:	
Calcio		mg/l	125	
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016			I	I
limite d	i quantificazione: 0,001		incertezza: ± 13	
				1
Cobalto		μg/l	< 1	50
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016				
limite d	quantificazione: 1		incertezza:	
Cromo totale		μg/l	< 1	50
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016		μ9/1		
limite d	i quantificazione: 1		incertezza:	
Cromo esavalente		μg/l	< 0,5	5
Metodo di analisi di riferimento: APAT CNR IRSA nº 3150 Man 2	9 2003		<u>'</u>	<u>'</u>
limite d	i quantificazione: 0,5		incertezza:	
				1
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016		μg/l	27	200
metodo di ariansi di merimento: UNI EN ISO 17294-2:2016				
limite d	i quantificazione: 1		incertezza: ± 3	
/lagnesio		mg/l	65	<u> </u>
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016		1119/1	00	
limite d	i quantificazione: 0,001		incertezza: ± 7	

Ordine dei CHIMICI e dei FISICI della Prov. di Treviso n° A093 Codice Fiscale GSTDRN42R12H823B P.IVA 01627660267 Via Pirzio Biroli n.1 - 31046 ODERZO (TV)

Triggiano, 15 dicembre 2020

Certificato n° 20CI00465

CERTIFICATO ANALISI

Manganese	μg/l	< 1	50
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016			
limite di quantificazione: 1		incertezza:	
mino di quantino azione.		moortozza.	
Mercurio Mercurio	μg/l	< 0,1	1
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016			
limite di quantificazione: 0,1		incertezza:	
Molibdeno		0.0	
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016	μg/l	2,0	
Wictord at analist at micrimonic. Oth EN 100 1725-2.2010			
limite di quantificazione: 1		incertezza: ± 0,2	
Nichelio	μg/l	< 1	20
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016	10.	-	
limite di quantificazione. 4		incortozza	
limite di quantificazione: 1		incertezza:	
Piombo	μg/l	< 1	10
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016			1
limite di quantificazione: 1		incertezza:	
anno a quantinoazione.			
Potassio	mg/l	16	
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016			
limite di quantificazione: 0,001		incertezza: ± 2	
Rame	//	<1	1000
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016	μg/l	× 1	1000
limite di quantificazione: 1		incertezza:	
Selenio	μg/l	< 0,3	10
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016		3,0	
limite di muselfere in con o o			
limite di quantificazione: 0,3		incertezza:	
Sodio	mg/l	392	
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016		'	'
limite di quantificazione: 0,001		incertezza: ± 39	
Stagno	μg/l	< 1	
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016			
limite di quantificazione: 1		incertezza:	
		2 -1	
Tallio	μg/l	< 0,2	2
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016			
limite di quantificazione: 0,2		incertezza:	

Ordine dei CHIMICI e dei FISICI della Prov. di Treviso n° A093 Codice Fiscale GSTDRN42R12H823B P.IVA 01627660267 Via Pirzio Biroli n.1 - 31046 ODERZO (TV)

Triggiano, 15 dicembre 2020

Certificato n° 20CI00465

CERTIFICATO ANALISI

			ı	
Tellurio		μg/l	< 1	
Metodo di analisi di riferimento: UNI EN ISO 1729	94-2:2016			
	limite di quantificazione: 1		incertezza:	
/anadio			4.0	
Metodo di analisi di riferimento: UNI EN ISO 1729	94-2-2016	μg/l	1,8	
	limite di quantificazione: 1		incertezza:	
Zinco		μg/l	2,7	3000
Metodo di analisi di riferimento: UNI EN ISO 1729	94-2:2016		· · · · · · · · · · · · · · · · · · ·	
	limito di guantificazione: 1		incertezza: ± 0,3	
	limite di quantificazione: 1		incertezza. ± 0,3	
Benzene		μg/l	< 0,1	1
Metodo di analisi di riferimento: UNI EN ISO 1568	0:2005			· '
	limite di quantificazione: 0,1		incertezza:	
	• • •		1	1
tilbenzene		μg/l	< 0,1	50
Metodo di analisi di riferimento: UNI EN ISO 1568	0:2005			
	limite di quantificazione: 0,1		incertezza:	
Stirene Metodo di analisi di riferimento: UNI EN ISO 1568	0.2005	μg/l	< 0,1	25
Metodo di ariansi di filerimento. Oni En 130 1300	0.2003			
	limite di quantificazione: 0,1		incertezza:	
oluene		μg/l	< 0,1	15
Metodo di analisi di riferimento: UNI EN ISO 1568	0:2005		10,1	
	limite di quantificazione: 0,1		incertezza:	
o-Xilene		μg/l	< 0,1	10
Metodo di analisi di riferimento: UNI EN ISO 1568	0:2005		- 1	I
	limite di quantificazione: 0,1		incertezza:	
	iiiiite di quantineazione. 0,1		incertezza.	
Benzo(a)antracene		μg/l	< 0,01	0,1
Metodo di analisi di riferimento: EPA 8270E			,	•
	limite di quantificazione: 0,01		incertezza:	
	•			1
Benzo(a)pirene		μg/l	< 0,001	0,01
Metodo di analisi di riferimento: EPA 8270E				
	limite di quantificazione: 0,001		incertezza:	
Benzo(b)fluorantene		μg/l	< 0,01	0,1
Metodo di analisi di riferimento: EPA 8270E				
	limite di quantificazione: 0,01		incertezza:	

Ordine dei CHIMICI e dei FISICI della Prov. di Treviso n° A093 Codice Fiscale GSTDRN42R12H823B P.IVA 01627660267 Via Pirzio Biroli n.1 - 31046 ODERZO (TV)

Triggiano, 15 dicembre 2020

Certificato n° 20CI00465

CERTIFICATO ANALISI

Benzo(k)fluorantene		μg/l	< 0,005	0,05
Metodo di analisi di riferimento: EPA 8270E				
limit	te di quantificazione: 0,005		incertezza:	
Benzo(g,h,i)perilene		μg/l	< 0,001	0,01
Metodo di analisi di riferimento: EPA 8270E				
limit	te di quantificazione: 0,001		incertezza:	
Crisene		μg/l	< 0,01	5
Metodo di analisi di riferimento: EPA 8270E		F9,.	10,01	
limit	te di quantificazione: 0,01		incertezza:	
Dibenzo(a,h)antracene		μg/l	< 0,001	0,01
Metodo di analisi di riferimento: EPA 8270E				ļ
limit	te di quantificazione: 0,001		incertezza:	
Indeno(1,2,3-c,d)pirene		μg/l	< 0,01	0,1
Metodo di analisi di riferimento: EPA 8270E				
limit	te di quantificazione: 0,01		incertezza:	
Pirene		//	< 0.04	50
Metodo di analisi di riferimento: EPA 8270E		μg/l	< 0,01	50
limit	te di quantificazione: 0,01		incertezza:	
Sommatoria IPA (punto 38, tabella 2, allegato	5, titolo V d. Lgs 152/2006)	μg/l	< 0,01	0,1
Metodo di analisi di riferimento: EPA 8270E	,		,	<u> </u>
limit	te di quantificazione: 0,01		incertezza:	
""""	to a quantineazione. 0,01		incortezza.	
Clorometano		μg/l	< 0,1	1,5
Metodo di analisi di riferimento: UNI EN ISO 15680:2005				
limit	te di quantificazione: 0,1		incertezza:	
Cloroformio (triclorometano)		μg/l	< 0,01	0,15
Metodo di analisi di riferimento: UNI EN ISO 15680:2005				
limit	te di quantificazione: 0,01		incertezza:	
Olement distrib				
Cloruro di vinile Metodo di analisi di riferimento: UNI EN ISO 15680:2005		μg/l	< 0,05	0,5
microdo di analisi di meninetilo. UNI EN 130 13060.2005				
limit	te di quantificazione: 0,05		incertezza:	
1,2 - Dicloroetano		μg/l	< 0,1	3
Metodo di analisi di riferimento: UNI EN ISO 15680:2005		ra''	- 0,1	
limit	te di quantificazione: 0,1		incertezza:	

Ordine dei CHIMICI e dei FISICI della Prov. di Treviso n° A093 Codice Fiscale GSTDRN42R12H823B P.IVA 01627660267 Via Pirzio Biroli n.1 - 31046 ODERZO (TV)

Triggiano, 15 dicembre 2020

Certificato n° 20CI00465

CERTIFICATO ANALISI

I,1 - Dicloroetilene	μg/l	0,035	0,05
Metodo di analisi di riferimento: UNI EN ISO 15680:2005		•	
limite di quantificazione: 0,005		incertezza: ± 0,0	005
ricloroetilene	μg/l	< 0,1	1,5
Metodo di analisi di riferimento: UNI EN ISO 15680:2005		, 0,1	1,5
limite di quantificazione: 0,1		incertezza:	
etracloroetilene	μg/l	0,13	1,1
Metodo di analisi di riferimento: UNI EN ISO 15680:2005		,	L
limite di quantificazione: 0,1		incertezza: ± 0,0)2
saclorobutadiene (HCBD)	μg/l	< 0,01	0,15
Metodo di analisi di riferimento: UNI EN ISO 15680:2005			
limite di quantificazione: 0,01		incertezza:	
ommatoria organoalogenati (punto 47, tabella 2, allegato 5, titolo V d. Lgs	ug/l	< 1	10
52/2006) Metodo di analisi di riferimento: UNI EN ISO 15680:2005	μg/l		10
Weldud di arialisi di meninerilo. Divi EN 130 13000.2003			
limite di quantificazione: 1		incertezza:	
,1 - Dicloroetano	μg/l	< 0,1	810
Metodo di analisi di riferimento: UNI EN ISO 15680:2005			
limite di quantificazione: 0,1		incertezza:	
,2 - Dicloroetilene	μg/l	< 0,1	60
Metodo di analisi di riferimento: UNI EN ISO 15680:2005		l .	
limite di quantificazione: 0,1		incertezza:	
,2 - Dicloropropano	μg/l	< 0,01	0,15
Metodo di analisi di riferimento: UNI EN ISO 15680:2005		3 0,01	
limite di quantificazione: 0,01		incertezza:	
1,2 - Tricloroetano	μg/l	< 0,01	0,2
Metodo di analisi di riferimento: UNI EN ISO 15680:2005		- 7	I
limite di quantificazione: 0,01		incertezza:	
,2,3 - Tricloropropano	μg/l	< 0,001	0,001
Metodo di analisi di riferimento: UNI EN ISO 15680:2005			'
limite di quantificazione: 0,001		incertezza:	
1,2,2 - Tetracloroetano	μg/l	< 0,005	0,05
Metodo di analisi di riferimento: UNI EN ISO 15680:2005		,	L
limite di quantificazione: 0,005		incertezza:	

Ordine dei CHIMICI e dei FISICI della Prov. di Treviso n° A093 Codice Fiscale GSTDRN42R12H823B P.IVA 01627660267 Via Pirzio Biroli n.1 - 31046 ODERZO (TV)

Triggiano, 15 dicembre 2020

Certificato n° 20CI00465

CERTIFICATO ANALISI

ribromometano	μg/l	< 0,01	0,3
Metodo di analisi di riferimento: UNI EN ISO 15680:2005			
limite di quantificazione: 0,01		incertezza:	
2 - Dibromoetano	μg/l	< 0,001	0,001
Metodo di analisi di riferimento: UNI EN ISO 15680:2005	ру/і	< 0,001	0,001
limite di quantificazione: 0,001		incertezza:	
ibromoclorometano	μg/l	< 0,01	0,13
Metodo di analisi di riferimento: UNI EN ISO 15680:2005		'	'
limite di quantificazione: 0,01		incertezza:	
romodiclorometano	μg/l	< 0,01	0,17
Metodo di analisi di riferimento: UNI EN ISO 15680:2005		3,5 -	<u> </u>
limite di quantificazione: 0,01		incertezza:	
mine a quantinoazione. 0,01		mocrtezza.	
litrobenzene	μg/l	< 0,3	3,5
Metodo di analisi di riferimento: EPA 8260 rev 3 2006			
limite di quantificazione: 0,3		incertezza:	
,2 - Dinitrobenzene	μg/l	< 0,3	15
Metodo di analisi di riferimento: EPA 8260 rev 3 2006		'	<u>'</u>
limite di quantificazione: 0,3		incertezza:	
,3- dinitrobenzene	μg/l	< 0,3	3,7
Metodo di analisi di riferimento: EPA 8260 rev 3 2006			
limite di quantificazione: 0,3		incertezza:	
Eloronitrobenzeni (ognumo) Metodo di analisi di riferimento: EPA 8260 rev 3 2006	μg/l	< 0,05	0,5
Metodo di analisi di Nierimenio. EPA 6200 lev 3 2006			
limite di quantificazione: 0,05		incertezza:	
lonoclorobenzene	μg/l	< 0,1	40
Metodo di analisi di riferimento: UNI EN ISO 15680:2005		'	'
limite di quantificazione: 0,1		incertezza:	
2 - diclorobenzene	μg/l	< 0,1	270
Metodo di analisi di riferimento: UNI EN ISO 15680:2005		- 7 -	
limite di quantificazione: 0,1		incertezza:	
,4 - diclorobenzene Metodo di analisi di riferimento: UNI EN ISO 15680:2005	μg/l	< 0,05	0,5
Microso di diidili di Hierimento. Ori EN 150 15000.2005			
limite di quantificazione: 0,05		incertezza:	

Ordine dei CHIMICI e dei FISICI della Prov. di Treviso n° A093 Codice Fiscale GSTDRN42R12H823B P.IVA 01627660267 Via Pirzio Biroli n.1 - 31046 ODERZO (TV)

Triggiano, 15 dicembre 2020

Certificato n° 20CI00465

CERTIFICATO ANALISI

,2,4 - Triclorobenzene		μg/l	< 0,1	190
Metodo di analisi di riferimento: UNI EN ISO 1568	0:2005			•
	limite di quantificazione: 0,1		incertezza:	
				1
2,4,5 - Tetraclorobenzene Metodo di analisi di riferimento: EPA 8270E		μg/l	< 0,1	1,8
Metodo di analisi di Menmento. EPA 6270E				
	limite di quantificazione: 0,1		incertezza:	
entaclorobenzene		μg/l	< 0,5	5
Metodo di analisi di riferimento: EPA 8270E			'	'
	limite di quantificazione: 0,5		incertezza:	
saclorobenzene (HCB)		μg/l	< 0,001	0,01
Metodo di analisi di riferimento: EPA 8270E				
	limite di quantificazione: 0,001		incertezza:	
- clorofenolo		μg/l	< 1	180
Metodo di analisi di riferimento: EPA 8270E		F9''	* 1	
	limite di quantificazione: 1		incertezza:	
4 - Diclorofenolo		μg/l	< 1	110
Metodo di analisi di riferimento: EPA 8270E				
	limite di quantificazione: 1		incertezza:	
4,6 - Triclorofenolo		μg/l	< 0,5	5
Metodo di analisi di riferimento: EPA 8270E				
	limite di quantificazione: 0,5		incertezza:	
entaclorofenolo		μg/l	< 0,05	0,5
Metodo di analisi di riferimento: EPA 8270E		13	3,60	.,.
	limite di quantificazione: 0,05		incertezza:	
laclor		μg/l	< 0,01	0,1
Metodo di analisi di riferimento: EPA 8270E			- 0,01	
	limite di quantificazione: 0,01		incertezza:	
ldrin		μg/l	< 0,003	0,03
Metodo di analisi di riferimento: EPA 8270E		L9.,	,	1 2,00
	limite di quantificazione: 0,003		incertezza:	
function a			10.04	
trazina Metodo di analisi di riferimento: EPA 8270E		µg/l	< 0,01	0,3
stodd di didaidi di Indianond. El A 0210E				
	limite di quantificazione: 0,01		incertezza:	

Ordine dei CHIMICI e dei FISICI della Prov. di Treviso n° A093 Codice Fiscale GSTDRN42R12H823B P.IVA 01627660267 Via Pirzio Biroli n.1 - 31046 ODERZO (TV)

Triggiano, 15 dicembre 2020

Certificato n° 20CI00465

CERTIFICATO ANALISI

Alfa-esacioroesano		μg/l	< 0,01	0,1
Metodo di analisi di riferimento: EPA 8270E				1
limite	di quantificazione: 0,01		incertezza:	
eta-esacloroesano		μg/l	< 0,01	0,1
Metodo di analisi di riferimento: EPA 8270E		- дул	\ 0,01	0,1
limite	di quantificazione: 0,01		incertezza:	
(Endows)			10.04	
amma-esacloroesano (lindano) Metodo di analisi di riferimento: EPA 8270E		μg/l	< 0,01	0,1
motodo di diffanoi di monificio. El 77 027 02				
limite	di quantificazione: 0,01		incertezza:	
lordano		μg/l	< 0,01	0,1
Metodo di analisi di riferimento: EPA 8270E				
limite	di quantificazione: 0,01		incertezza:	
DD DDT DDE			10.04	
DDD, DDT, DDE Metodo di analisi di riferimento: EPA 8270E		μg/l	< 0,01	0,1
limite	di quantificazione: 0,01		incertezza:	
ieldrin		μg/l	< 0,003	0,03
Metodo di analisi di riferimento: EPA 8270E			'	1
limite	di quantificazione: 0,003		incertezza:	
ndrin		μg/l	< 0,01	0,1
Metodo di analisi di riferimento: EPA 8270E			·	I
limite	di quantificazione: 0,01		incertezza:	
commatoria fitofarmaci (punto 86, tabella	2 allegate E titole V d Lac		-	
52/2006)	z, anegato 5, titolo v d. Lgs	μg/l	< 0,05	0,5
Metodo di analisi di riferimento: EPA 8270E				-
limite	di quantificazione: 0,05		incertezza:	
lorpirifos		μg/l	< 0,1	
Metodo di analisi di riferimento: EPA 8270E		1-3		
limite	di quantificazione: 0,1		incertezza:	
		-		I
Vimetoato Metodo di analisi di riferimento: EPA 8270E		μg/l	< 0,1	
limite	di quantificazione: 0,1		incertezza:	
eltametrina		μg/l	< 0,1	
enamenna				
Metodo di analisi di riferimento: EPA 8270E			- ,	L

Ordine dei CHIMICI e dei FISICI della Prov. di Treviso n° A093 Codice Fiscale GSTDRN42R12H823B P.IVA 01627660267 Via Pirzio Biroli n.1 - 31046 ODERZO (TV)

Triggiano, 15 dicembre 2020

Certificato n° 20CI00465

CERTIFICATO ANALISI

(valido a tutti gli effetti come da D. L. n° 842/28)

Fention		μg/l	< 0,1	
Metodo di analisi di riferimento: EPA 8270E			· · · · · · · · · · · · · · · · · · ·	'
	limite di quantificazione: 0,1		incertezza:	
Oxifluorfen		μg/l	< 0,1	
Metodo di analisi di riferimento: EPA 8270E				, , , , , , , , , , , , , , , , , , ,
	limite di quantificazione: 0,1		incertezza:	
Paration		μg/l	< 0,1	
Metodo di analisi di riferimento: EPA 8270E				·
	limite di quantificazione: 0,1		incertezza:	
Simazina		μg/l	< 0,1	
Metodo di analisi di riferimento: EPA 8270E			•	·
	limite di quantificazione: 0,1		incertezza:	
Sommatoria pesticidi fosforati		μg/l	< 0,1	
Metodo di analisi di riferimento: EPA 8270E			•	•
	limite di quantificazione: 0,1		incertezza:	
PCB		μg/l	< 0,001	0,01
Metodo di analisi di riferimento: APAT CNR IRSA	5110 Man 29 2003			
	limite di quantificazione: 0,001		incertezza:	

Note:

La determinazione dei metalli è stata effettuata sul campione filtrato e acidificato. Nel calcolo della concentrazione degli elementi in traccia non viene considerato il recupero determinato dal laboratorio il quale risulta essere compreso tra 90 e 110 %.

L'incertezza di misura riportata nel presente certificato di analisi è espressa come incertezza estesa con un fattore di copertura (k) pari a 2 corrispondente a un livello di fiducia di circa 95%.

I risultati delle analisi si riferiscono ESCLUSIVAMENTE al campione esaminato; si declina ogni responsabilità nei casi di utilizzo del presente atto in difformità agli usi consentiti dalla Legge. Le analisi da eseguire sono state commissionate dal committente e dunque si declina ogni responsabilità in merito alla completezza delle informazioni.

Le analisi sono state eseguite dalla Lifeanalytics S.r.l., accreditato al n. 0128L

Le analisi sono state commissionate ai laboratori del Gruppo LIFEANALYTICS

Lifeanalytics S.r.l.

www.lifeanalytics.it

servizioclienti@lifeanalytics.it

Laboratori Conformi alla norma UNI CEI EN ISO/IEC 17025:2018
Laboratori Certificati UNI EN ISO 9001:2015 e UNI EN ISO 14001:2015

Sede Triggiano - Tel. 0804621899 - info.chimie@lifeanalytics.it

Ordine dei CHIMICI e dei FISICI della Prov. di Treviso n° A093 Codice Fiscale GSTDRN42R12H823B P.IVA 01627660267 Via Pirzio Biroli n.1 - 31046 ODERZO (TV)

Triggiano, 15 dicembre 2020

Certificato n° 20Cl00463

CERTIFICATO ANALISI

(valido a tutti gli effetti come da D. L. n° 842/28)

COMMITTENTE: FORMICA AMBIENTE srl - Via Groenlandia 47 - Roma

ETICHETTA: Campione di acqua di falda prelevato dal pozzo n° **5A** della discarica per rifiuti non pericolosi sita in c.da Formica (BR)

Data ricezione campione: 24/11/20 Profondità della falda: 44,3 m

Il campione è stato prelevato dal tecnico dello studio CHIMIE Srl, P. Chim. G. Cipriano come da verbale n° 56/11

RISULTATI

PARAMETRO	unità di misura	valore determinato	D. Lgs. 152/06 Tab. 2 allegato 5 alla parte IV Titolo V
рН		7,07	
Metodo di analisi di riferimento: UNI EN ISO 10523:2012			•
limite di quantificazione: > 1 e < 13		incertezza: ±	0,12
Temperatura	°C	21,3	
Metodo di analisi di riferimento: APAT CNR IRSA 2100 Man 29 2003			·
limite di quantificazione: 1		incertezza: ±	0,2
Ossigeno disciolto	mg/l	5,00	
Metodo di analisi di riferimento: Strumentale - Sensore di Ossigeno Disciolto a luminescenza LDO			·
limite di quantificazione: 0,5		incertezza: ±	0,50
Potenziale Redox	mV	233,4	
Metodo di analisi di riferimento: Strumentale - Sensore ORP			·
limite di quantificazione: 10		incertezza: ±	23,3
Conducibilità	uS/cm a 20 °C	3470	
Metodo di analisi di riferimento: UNI EN 27888:1995			·
limite di quantificazione: 10		incertezza: ±	69
Ossidabilità O2	mg/l	< 0,5	
Metodo di analisi di riferimento: metodo Tritrimetrico (secondo Kubel), ISTISAN 07/31			•
limite di quantificazione: 0,5		incertezza:	
Domanda biochimica di ossigeno (BOD5) a 20°C senza nitrificazione	mgO ₂ /I	< 0,5	
Metodo di analisi di riferimento: APAT CNR IRSA 5120 Man 29 2003			
limite di quantificazione: 0,5		incertezza:	
Carbonio organico totale (TOC)	mg/l	< 0,1	
Metodo di analisi di riferimento: APAT CNR IRSA 5040 Man 29 2003			'
limite di quantificazione: 0,1		incertezza:	

Ordine dei CHIMICI e dei FISICI della Prov. di Treviso n° A093 Codice Fiscale GSTDRN42R12H823B P.IVA 01627660267 Via Pirzio Biroli n.1 - 31046 ODERZO (TV)

Triggiano, 15 dicembre 2020

Certificato n° 20CI00463

CERTIFICATO ANALISI

urezza totale	°F	66	
Metodo di analisi di riferimento: APAT CNR IRSA 2040 A Man 29 2003			1
limite di quantificazione: 5		incertezza: ±	1
ianuri	μg/l	< 1	50
Metodo di analisi di riferimento: APAT CNR IRSA 4070 Man 29 2003			
limite di quantificazione: 1		incertezza:	
luoruri	mg/l	0,27	1,5
Metodo di analisi di riferimento: UNI EN ISO 10304-1:2009			
limite di quantificazione: 0,1		incertezza: ±	0,03
ituiti coma NO2		< F0	500
itriti come NO2 Metodo di analisi di riferimento: UNI EN ISO 10304-1:2009	μg/l	< 50	500
limite di quantificazione: 50		incertezza:	
olfati	mg/l	169	250
Metodo di analisi di riferimento: UNI EN ISO 10304-1:2009	9	100	
limite di quantificazione: 0,1		incertezza: ±	17
loruri	mg/l	901	
Metodo di analisi di riferimento: UNI EN ISO 10304-1:2009			
limite di quantificazione: 0,1		incertezza: ±	90
mino di quantino di con		oortozza: z	
itrati come NO3	mg/l	21	
Metodo di analisi di riferimento: UNI EN ISO 10304-1:2009			
limite di quantificazione: 0,1		incertezza: ±	2
			Ī
mmoniaca come NH4	mg/l	< 0,05	
Metodo di analisi di riferimento: UNICHIM 2363:2009			
limite di quantificazione: 0,05		incertezza:	
lluminio			200
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016	µg/l	<1	200
limite di quantificazione: 1		incertezza:	
ntimonio	μg/l	< 0,3	5
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016	. 3	-,-	
the its at a constant of the		inet	
limite di quantificazione: 0,3		incertezza:	
	μg/l	< 1	10
rgento	1.5	2.1	
rgento Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016	13		

Ordine dei CHIMICI e dei FISICI della Prov. di Treviso nº A093 Codice Fiscale GSTDRN42R12H823B P.IVA 01627660267 Via Pirzio Biroli n.1 - 31046 ODERZO (TV)

Triggiano, 15 dicembre 2020

Certificato n° 20CI00463

CERTIFICATO ANALISI

Arsenico	μg/l	<1	10
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016			
limite di quantificazione: 1		incertezza:	
gario	μg/l	34	
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016			
limite di quantificazione: 1		incorto-zau I 2	
ilmite di quantificazione: T		incertezza: ± 3	
erillio	μg/l	< 0,3	4
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016			
limite di quantificazione: 0,3		incertezza:	
Soro	ua/l	269	1000
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016	μg/l	209	1000
limite di quantificazione: 1		incertezza: ± 27	
Cadmio	μg/l	< 0,3	5
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016		ļ.	
limite di quantificazione: 0,3		incertezza:	
Calcio	mg/l	138	
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016			
limite di quantificazione: 0,001		incertezza: ± 14	
Cobalto	μg/l	<1	50
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016			
limite di quantificazione: 1		incertezza:	
iiinto di quantinoazione.		moortozzu.	
Cromo totale	μg/l	< 1	50
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016			
limite di quantificazione: 1		incertezza:	
Cromo esavalente	μg/l	< 0,5	5
Metodo di analisi di riferimento: APAT CNR IRSA n° 3150 Man 29 2003	μg/1	< 0,5	
limite di quantificazione: 0,5		incertezza:	
erro	μg/l	1,5	200
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016		l	
limite di quantificazione: 1		incertezza:	
		1	1
Magnesio	mg/l	78	
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016			
limite di quantificazione: 0,001		incertezza: ± 8	

Ordine dei CHIMICI e dei FISICI della Prov. di Treviso n° A093 Codice Fiscale GSTDRN42R12H823B P.IVA 01627660267 Via Pirzio Biroli n.1 - 31046 ODERZO (TV)

Triggiano, 15 dicembre 2020

Certificato n° 20CI00463

CERTIFICATO ANALISI

Manganese		μg/l	< 1	50
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016				1
lin	ite di quantificazione: 1		incertezza:	
	·			I
lercurio		μg/l	< 0,1	1
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016				
lim	ite di quantificazione: 0,1		incertezza:	
lolibdeno		μg/l	5,0	
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016		F9,.	0,0	
lim	ite di quantificazione: 1		incertezza: ± (),5
lichelio		μg/l	< 1	20
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016				ļ.
lim	uite di quantificazione: 1		incertezza:	
				1
Piombo		μg/l	< 1	10
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016				
lim	ite di quantificazione: 1		incertezza:	
Potassio		mg/l	20	
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016			20	
	W. H			
ıın	ite di quantificazione: 0,001		incertezza: ± 2	2
Rame		μg/l	<1	100
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016				•
lim	ite di quantificazione: 1		incertezza:	
Selenio		μg/l	< 0,3	10
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016				
lin	ite di quantificazione: 0,3		incertezza:	
odio		mg/l	471	
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016			47.1	
			incertezza: ± 4	17
IIIT	ite di quantificazione: 0,001		incertezza. ± 4	+1
tagno		μg/l	12	
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016				·
lim	ite di quantificazione: 1		incertezza: ± 1	1
			ı	Т
allio		μg/l	< 0,2	2
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016				
lim	ite di quantificazione: 0,2		incertezza:	

Ordine dei CHIMICI e dei FISICI della Prov. di Treviso n° A093 Codice Fiscale GSTDRN42R12H823B P.IVA 01627660267 Via Pirzio Biroli n.1 - 31046 ODERZO (TV)

Triggiano, 15 dicembre 2020

Certificato n° 20CI00463

CERTIFICATO ANALISI

Tellurio Tellurio		μg/l	< 1	
Metodo di analisi di riferimento: UNI EN ISO 17294-2:201	6			,
I	imite di quantificazione: 1		incertezza:	
			[
/anadio Metodo di analisi di riferimento: UNI EN ISO 17294-2:201	0	μg/l	11	
Metodo di analisi di riferimento: UNI EN ISO 17294-2:201	0			
I	imite di quantificazione: 1		incertezza: ±	1
Zinco		μg/l	3,3	3000
Metodo di analisi di riferimento: UNI EN ISO 17294-2:201	6	μ9/1	3,3	
I	imite di quantificazione: 1		incertezza: ±	0,3
Benzene		μg/l	< 0,1	1
Metodo di analisi di riferimento: UNI EN ISO 15680:2005				I
-	imite di quantificazione: 0,1		incertezza:	
<u>'</u>	a. quarianouziono. U, I		moortozza.	·
Etilbenzene		μg/l	< 0,1	50
Metodo di analisi di riferimento: UNI EN ISO 15680:2005				
	imite di quantificazione: 0,1		incertezza:	
	·			ı
Stirene		μg/l	< 0,1	25
Metodo di analisi di riferimento: UNI EN ISO 15680:2005				
I	imite di quantificazione: 0,1		incertezza:	
Foluene		μg/l	0,56	15
Metodo di analisi di riferimento: UNI EN ISO 15680:2005			0,30	13
I	imite di quantificazione: 0,1		incertezza: ±	0,06
p-Xilene		μg/l	< 0,1	10
Metodo di analisi di riferimento: UNI EN ISO 15680:2005			-,	
	imite di quantificazione. O 1		incorto	
ı	imite di quantificazione: 0,1		incertezza:	
Benzo(a)antracene		μg/l	< 0,01	0,1
Metodo di analisi di riferimento: EPA 8270E				<u>'</u>
1	imite di quantificazione: 0,01		incertezza:	
	1			
Benzo(a)pirene		μg/l	< 0,001	0,01
Metodo di analisi di riferimento: EPA 8270E				
1	imite di quantificazione: 0,001		incertezza:	
			Г	I
Benzo(b)fluorantene		μg/l	< 0,01	0,1
Metodo di analisi di riferimento: EPA 8270E				
	imite di quantificazione: 0,01		incertezza:	

Ordine dei CHIMICI e dei FISICI della Prov. di Treviso n° A093 Codice Fiscale GSTDRN42R12H823B P.IVA 01627660267 Via Pirzio Biroli n.1 - 31046 ODERZO (TV)

Triggiano, 15 dicembre 2020

Certificato n° 20CI00463

CERTIFICATO ANALISI

Benzo(k)fluorantene	μg/l	< 0,005	0,05
Metodo di analisi di riferimento: EPA 8270E			
limite di quantificazion	e: 0,005	incertezza:	
enzo(g,h,i)perilene	<u>μ</u> g/l	< 0,001	0.01
Metodo di analisi di riferimento: EPA 8270E	<u>н</u>	\ 0,001	0,01
limite di quantificazion	e: 0,001	incertezza:	
risene	μg/l	< 0,01	5
Metodo di analisi di riferimento: EPA 8270E		-,	
limite di quantificazion	e: 0,01	incertezza:	
ibenzo(a,h)antracene	μg/l	< 0,001	0,01
Metodo di analisi di riferimento: EPA 8270E		.,	
limite di quantificazion	e: 0,001	incertezza:	
ndeno(1,2,3-c,d)pirene	μg/l	< 0,01	0,1
Metodo di analisi di riferimento: EPA 8270E		7 0,01	
limite di quantificazion	e: 0,01	incertezza:	
irene	µg/l	< 0,01	50
Metodo di analisi di riferimento: EPA 8270E			
limite di quantificazion	e: 0,01	incertezza:	
ommatoria IPA (punto 38, tabella 2, allegato 5, titolo V c	i. Lgs 152/2006) µg/l	< 0,01	0,1
Metodo di analisi di riferimento: EPA 8270E			
limite di quantificazion	e: 0,01	incertezza:	
Clorometano	μg/l	< 0,1	1,5
Metodo di analisi di riferimento: UNI EN ISO 15680:2005		,	I
limite di quantificazion	e: 0,1	incertezza:	
loroformio (triclorometano)	μg/l	0,040	0,15
Metodo di analisi di riferimento: UNI EN ISO 15680:2005		3,0 .0	
limite di quantificazion	e: 0,01	incertezza: ± (0,006
Cloruro di vinile	μg/l	< 0,05	0,5
Metodo di analisi di riferimento: UNI EN ISO 15680:2005	д ул	- 0,00	0,0
limite di quantificazion	e: 0,05	incertezza:	
,2 - Dicloroetano	μg/l	< 0,1	3
Metodo di analisi di riferimento: UNI EN ISO 15680:2005	<u>н</u> дуг	~ 0,1	
limite di quantificazion	e: 0,1	incertezza:	
<u> </u>			

Ordine dei CHIMICI e dei FISICI della Prov. di Treviso n° A093 Codice Fiscale GSTDRN42R12H823B P.IVA 01627660267 Via Pirzio Biroli n.1 - 31046 ODERZO (TV)

Triggiano, 15 dicembre 2020

Certificato n° 20CI00463

CERTIFICATO ANALISI

,1 - Dicloroetilene	μg/l	1,530	0,05
Metodo di analisi di riferimento: UNI EN ISO 15680:2005			ļ .
limite di quantificazione: 0,005		incertezza: ± 0,230	
ricloroetilene	μg/l	< 0,1	1,5
Metodo di analisi di riferimento: UNI EN ISO 15680:2005			
limite di quantificazione: 0,1		incertezza:	
etracloroetilene	μg/l	< 0,1	1,1
Metodo di analisi di riferimento: UNI EN ISO 15680:2005		'	!
limite di quantificazione: 0,1		incertezza:	
saclorobutadiene (HCBD)	μg/l	< 0,01	0,15
Metodo di analisi di riferimento: UNI EN ISO 15680:2005		2,01	
limite di quantificazione: 0,01		incertezza:	
ommatoria organoalogenati (punto 47, tabella 2, allegato 5, titolo V d. Lgs			
52/2006)	μg/l	1,6	10
Metodo di analisi di riferimento: UNI EN ISO 15680:2005			•
limite di quantificazione: 1		incertezza:	
,1 - Dicloroetano	μg/l	0,56	810
Metodo di analisi di riferimento: UNI EN ISO 15680:2005			
limite di quantificazione: 0,1		incertezza: ± 0,08	
,2 - Dicloroetilene	μg/l	< 0,1	60
Metodo di analisi di riferimento: UNI EN ISO 15680:2005	P9''	7 0,1	
limite di quantificazione: 0,1		incertezza:	
,2 - Dicloropropano	μg/l	< 0,01	0,15
Metodo di analisi di riferimento: UNI EN ISO 15680:2005			
limite di quantificazione: 0,01		incertezza:	
1,2 - Tricloroetano	μg/l	< 0,01	0,2
Metodo di analisi di riferimento: UNI EN ISO 15680:2005			
limite di quantificazione: 0,01		incertezza:	
,2,3 - Tricloropropano	μg/l	< 0,001	0,001
Metodo di analisi di riferimento: UNI EN ISO 15680:2005		-,	.,
limite di quantificazione: 0,001		incertezza:	
			I
,1,2,2 - Tetracloroetano Metodo di analisi di riferimento: UNI EN ISO 15680:2005	μg/l	< 0,005	0,05
ivietuuu ui ariaiisi ui filefilliefilu. Uivi Eiv ISO 19000.2005			
limite di quantificazione: 0,005		incertezza:	

Ordine dei CHIMICI e dei FISICI della Prov. di Treviso n° A093 Codice Fiscale GSTDRN42R12H823B P.IVA 01627660267 Via Pirzio Biroli n.1 - 31046 ODERZO (TV)

Triggiano, 15 dicembre 2020

Certificato n° 20CI00463

CERTIFICATO ANALISI

Tribromometano	μg/l	< 0,01	0,3
Metodo di analisi di riferimento: UNI EN ISO 15680:2005		'	!
limite di quantificazione: 0,01		incertezza:	
		1	
2 - Dibromoetano Metodo di analisi di riferimento: UNI EN ISO 15680:2005	μg/l	< 0,001	0,001
Wictors of affairs di frictimento. Gra Eta 100 10000.2000			
limite di quantificazione: 0,001		incertezza:	
ibromoclorometano	μg/l	< 0,01	0,13
Metodo di analisi di riferimento: UNI EN ISO 15680:2005			
limite di quantificazione: 0,01		incertezza:	
romodiclorometano	μg/l	< 0,01	0,17
Metodo di analisi di riferimento: UNI EN ISO 15680:2005	13	3,01	
limite di quantificazione: 0,01		incertezza:	
iiiiiie di quantinoazione. 0,01		mocrtezza.	
itrobenzene	μg/l	< 0,3	3,5
Metodo di analisi di riferimento: EPA 8260 rev 3 2006			
limite di quantificazione: 0,3		incertezza:	
2 - Dinitrobenzene	μg/l	< 0,3	15
Metodo di analisi di riferimento: EPA 8260 rev 3 2006		<u> </u>	
limite di quantificazione: 0,3		incertezza:	
3- dinitrobenzene	μg/l	< 0,3	3,7
Metodo di analisi di riferimento: EPA 8260 rev 3 2006		I	
limite di quantificazione: 0,3		incertezza:	
Ioronitrobenzeni (ognumo) Metodo di analisi di riferimento: EPA 8260 rev 3 2006	μg/l	< 0,05	0,5
welded at attails at the little into . Lt A 0200 feV 3 2000			
limite di quantificazione: 0,05		incertezza:	
onoclorobenzene	μg/l	< 0,1	40
Metodo di analisi di riferimento: UNI EN ISO 15680:2005		•	<u>'</u>
limite di quantificazione: 0,1		incertezza:	
2 - diclorobenzene	/!	< 0.1	070
Z - dictoropenzene Metodo di analisi di riferimento: UNI EN ISO 15680:2005	μg/l	< 0,1	270
limite di quantificazione: 0,1		incertezza:	
4 - diclorobenzene	μg/l	< 0,05	0,5
Metodo di analisi di riferimento: UNI EN ISO 15680:2005		1	I
limite di quantificazione: 0,05		incertezza:	
iiffile di quantificazione: U,U5		incertezza:	

Ordine dei CHIMICI e dei FISICI della Prov. di Treviso n° A093 Codice Fiscale GSTDRN42R12H823B P.IVA 01627660267 Via Pirzio Biroli n.1 - 31046 ODERZO (TV)

Triggiano, 15 dicembre 2020

Certificato n° 20CI00463

CERTIFICATO ANALISI

,2,4 - Triclorobenzene		μg/l	< 0,1	190
Metodo di analisi di riferimento: UNI EN ISO 1568	0:2005			
	limite di quantificazione: 0,1		incertezza:	
2.4.5. Totaloushamana			104	10
2,4,5 - Tetraclorobenzene Metodo di analisi di riferimento: EPA 8270E		µg/l	< 0,1	1,8
Motodo di dilanoi di monmonto. El 71 02102				
	limite di quantificazione: 0,1		incertezza:	
entaclorobenzene		μg/l	< 0,5	5
Metodo di analisi di riferimento: EPA 8270E				
	limite di quantificazione: 0,5		incertezza:	
saclorobenzene (HCB)		μg/l	< 0,001	0,01
Metodo di analisi di riferimento: EPA 8270E			l	
	limite di quantificazione: 0,001		incertezza:	
- clorofenolo		μg/l	<1	180
Metodo di analisi di riferimento: EPA 8270E		F9:		
	limite di quantificazione: 1		incertezza:	
,4 - Diclorofenolo		μg/l	< 1	110
Metodo di analisi di riferimento: EPA 8270E			-	'
	limite di quantificazione: 1		incertezza:	
,4,6 - Triclorofenolo		μg/l	< 0,5	5
Metodo di analisi di riferimento: EPA 8270E			-	
	limite di quantificazione: 0,5		incertezza:	
entaclorofenolo		μg/l	< 0,05	0,5
Metodo di analisi di riferimento: EPA 8270E		1-5.	1 0,00	
	limite di quantificazione: 0,05		incertezza:	
lacior		μg/l	< 0,01	0,1
Metodo di analisi di riferimento: EPA 8270E		ру/і	< 0,01	0,1
	limite di quantificazione: 0,01		incertezza:	
ldrin		P	4 0 000	0.00
Metodo di analisi di riferimento: EPA 8270E		μg/l	< 0,003	0,03
	limite di monette mi co coco		in and an	
	limite di quantificazione: 0,003		incertezza:	
trazina		μg/l	< 0,01	0,3
Metodo di analisi di riferimento: EPA 8270E				
	limite di quantificazione: 0,01		incertezza:	

Ordine dei CHIMICI e dei FISICI della Prov. di Treviso n° A093 Codice Fiscale GSTDRN42R12H823B P.IVA 01627660267 Via Pirzio Biroli n.1 - 31046 ODERZO (TV)

Triggiano, 15 dicembre 2020

Certificato n° 20CI00463

CERTIFICATO ANALISI

Alfa-esacloroesano		μg/l	< 0,01	0,1
Metodo di analisi di riferimento: EPA 8270E				
limite di q	uantificazione: 0,01		incertezza:	
Beta-esacloroesano		μg/l	< 0,01	0,1
Metodo di analisi di riferimento: EPA 8270E			,	I
limite di q	uantificazione: 0,01		incertezza:	
Gamma-esacloroesano (lindano)		ua/l	< 0,01	0,1
Metodo di analisi di riferimento: EPA 8270E		μg/l	< 0,01	0,1
limite di a	uantificazione: 0,01		incertezza:	
	aanuncazione. 0,01		Incertezza.	
Clordano		μg/l	< 0,01	0,1
Metodo di analisi di riferimento: EPA 8270E				
limite di q	uantificazione: 0,01		incertezza:	
DDD, DDT, DDE		μg/l	< 0,01	0,1
Metodo di analisi di riferimento: EPA 8270E			I	
limite di q	uantificazione: 0,01		incertezza:	
Dieldrin		μg/l	< 0,003	0,03
Metodo di analisi di riferimento: EPA 8270E		дд/1	< 0,003	0,03
limite di a	uantificazione: 0,003		incertezza:	
	·			T
Endrin Metodo di analisi di riferimento: EPA 8270E		μg/l	< 0,01	0,1
<u> </u>	uantificazione: 0,01		incertezza:	
Sommatoria fitofarmaci (punto 86, tabella 2, 152/2006)	allegato 5, titolo V d. Lgs	μg/l	< 0,05	0,5
Metodo di analisi di riferimento: EPA 8270E				
limite di q	uantificazione: 0,05		incertezza:	
	·			T
Clorpirifos Metodo di analisi di riferimento: EPA 8270E		μg/l	< 0,1	
Welde d'analis d'Hiermente. El A 62762				
limite di q	uantificazione: 0,1		incertezza:	
Dimetoato		μg/l	< 0,1	
Metodo di analisi di riferimento: EPA 8270E				
limite di q	uantificazione: 0,1		incertezza:	
Deltametrina Programme Pro		μg/l	< 0,1	
Metodo di analisi di riferimento: EPA 8270E		r:3''	- 0,1	
limita di a	uantificazione: 0,1		incertezza:	
minite di q			moontozza.	

Ordine dei CHIMICI e dei FISICI della Prov. di Treviso n° A093 Codice Fiscale GSTDRN42R12H823B P.IVA 01627660267 Via Pirzio Biroli n.1 - 31046 ODERZO (TV)

Triggiano, 15 dicembre 2020

Certificato n° 20CI00463

CERTIFICATO ANALISI

(valido a tutti gli effetti come da D. L. n° 842/28)

Fention		μg/l	< 0,1	
Metodo di analisi di riferimento: EPA 8270E			•	I
	limite di quantificazione: 0,1		incertezza:	
Oxifluorfen		μg/l	< 0,1	
Metodo di analisi di riferimento: EPA 8270E			•	
	limite di quantificazione: 0,1		incertezza:	
Paration		μg/l	< 0,1	
Metodo di analisi di riferimento: EPA 8270E			·	·
	limite di quantificazione: 0,1		incertezza:	
Simazina		μg/l	< 0,1	
Metodo di analisi di riferimento: EPA 8270E			•	·
	limite di quantificazione: 0,1		incertezza:	
Sommatoria pesticidi fosforati		μg/l	< 0,1	
Metodo di analisi di riferimento: EPA 8270E				
	limite di quantificazione: 0,1		incertezza:	
PCB		μg/l	< 0,001	0,01
Metodo di analisi di riferimento: APAT CNR IRSA	5110 Man 29 2003			
	limite di quantificazione: 0,001		incertezza:	

Note:

La determinazione dei metalli è stata effettuata sul campione filtrato e acidificato. Nel calcolo della concentrazione degli elementi in traccia non viene considerato il recupero determinato dal laboratorio il quale risulta essere compreso tra 90 e 110 %.

L'incertezza di misura riportata nel presente certificato di analisi è espressa come incertezza estesa con un fattore di copertura (k) pari a 2 corrispondente a un livello di fiducia di circa 95%.

I risultati delle analisi si riferiscono ESCLUSIVAMENTE al campione esaminato; si declina ogni responsabilità nei casi di utilizzo del presente atto in difformità agli usi consentiti dalla Legge. Le analisi da eseguire sono state commissionate dal committente e dunque si declina ogni responsabilità in merito alla completezza delle informazioni.

Le analisi sono state eseguite dalla Lifeanalytics S.r.l., accreditato al n. 0128L

Le analisi sono state commissionate ai laboratori del Gruppo LIFEANALYTICS

Lifeanalytics S.r.l.

www.lifeanalytics.it
servizioclienti@lifeanalytics.it
Laboratori Conformi alla norma UNI CEI EN ISO/IEC 17025:2018
Laboratori Certificati UNI EN ISO 9001:2015 e UNI EN ISO 14001:2015

Sede Triggiano - Tel. 0804621899 – info.chimie@lifeanalytics.it

Ordine dei CHIMICI e dei FISICI della Prov. di Treviso n° A093 Codice Fiscale GSTDRN42R12H823B P.IVA 01627660267 Via Pirzio Biroli n.1 - 31046 ODERZO (TV)

Triggiano, 15 dicembre 2020

Certificato n° 20Cl00462

CERTIFICATO ANALISI

(valido a tutti gli effetti come da D. L. n° 842/28)

COMMITTENTE: FORMICA AMBIENTE srl - Via Groenlandia 47 - Roma

ETICHETTA: Campione di acqua di falda prelevato dal pozzo n° **4A** della discarica per rifiuti non pericolosi sita in c.da Formica (BR)

Data ricezione campione: 24/11/20 Profondità della falda: 43,5 m

Il campione è stato prelevato dal tecnico dello studio CHIMIE Srl, P. Chim. G. Cipriano come da verbale n° 56/11

RISULTATI

PARAMETRO	unità di misura	valore determinato	D. Lgs. 152/06 Tab. 2 allegato 5 alla parte IV Titolo V
рН		6,98	
Metodo di analisi di riferimento: UNI EN ISO 10523:2012		'	<u>'</u>
limite di quantificazione: > 1 e < 13		incertezza: ±	0,12
Temperatura	°C	22,2	
Metodo di analisi di riferimento: APAT CNR IRSA 2100 Man 29 2003			
limite di quantificazione: 1		incertezza: ±	0,2
Ossigeno disciolto	mg/l	4,00	
Metodo di analisi di riferimento: Strumentale - Sensore di Ossigeno Disciolto a luminescenza LDO			·
limite di quantificazione: 0,5		incertezza: ±	0,40
Potenziale Redox	mV	215,3	
Metodo di analisi di riferimento: Strumentale - Sensore ORP			·
limite di quantificazione: 10		incertezza: ±	21,5
Conducibilità	uS/cm a 20 °C	3310	
Metodo di analisi di riferimento: UNI EN 27888:1995			·
limite di quantificazione: 10		incertezza: ±	66
Ossidabilità O2	mg/l	< 0,5	
Metodo di analisi di riferimento: metodo Tritrimetrico (secondo Kubel), ISTISAN 07/31		•	
limite di quantificazione: 0,5		incertezza:	
Domanda biochimica di ossigeno (BOD5) a 20°C senza nitrificazione	mgO ₂ /I	< 0,5	
Metodo di analisi di riferimento: APAT CNR IRSA 5120 Man 29 2003		·	<u>'</u>
limite di quantificazione: 0,5		incertezza:	
Carbonio organico totale (TOC)	mg/l	0,20	
Metodo di analisi di riferimento: APAT CNR IRSA 5040 Man 29 2003			
limite di quantificazione: 0,1		incertezza: ±	0,04

Ordine dei CHIMICI e dei FISICI della Prov. di Treviso n° A093 Codice Fiscale GSTDRN42R12H823B P.IVA 01627660267 Via Pirzio Biroli n.1 - 31046 ODERZO (TV)

Triggiano, 15 dicembre 2020

Certificato n° 20Cl00462

CERTIFICATO ANALISI

Durezza totale		°F	68	
Metodo di analisi di riferimento: APAT CNR IRSA 2040 A Man 29 2003			!	·
limite di quantificaz	zione: 5		incertezza: ± 1	
				,
ianuri		μg/l	< 1	50
Metodo di analisi di riferimento: APAT CNR IRSA 4070 Man 29 2003				
limite di quantificaz	zione: 1		incertezza:	
luoruri		mg/l	0,25	1,5
Metodo di analisi di riferimento: UNI EN ISO 10304-1:2009		Ilig/i	0,25	1,5
limite di quantificaz	zione: 0,1		incertezza: ± 0,03	
litriti come NO2		μg/l	< 50	500
Metodo di analisi di riferimento: UNI EN ISO 10304-1:2009				
limite di quantificaz	zione: 50		incertezza:	
iime di quantificaz			micentezza.	
olfati		mg/l	141	250
Metodo di analisi di riferimento: UNI EN ISO 10304-1:2009			•	•
limite di quantificaz	zione: 0,1		incertezza: ± 14	
	· · · · · · · · · · · · · · · · · · ·			
loruri		mg/l	883	
Metodo di analisi di riferimento: UNI EN ISO 10304-1:2009				
limite di quantificaz	zione: 0,1		incertezza: ± 88	
itrati come NO3		mg/l	18	
Metodo di analisi di riferimento: UNI EN ISO 10304-1:2009		9		
limite di quantificaz	zione: 0,1		incertezza: ± 2	
mmoniaca come NH4		mg/l	< 0,05	
Metodo di analisi di riferimento: UNICHIM 2363:2009				l
limite di quantificaz	zione: 0.05		incertezza:	
iiiiile a quantilleez			moortozza.	
lluminio		μg/l	< 1	200
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016			<u> </u>	
limite di quantificaz	zione: 1		incertezza:	
				I
ntimonio		μg/l	< 0,3	5
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016				
limite di quantificaz	zione: 0,3		incertezza:	
		P	- 4	40
rgento Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016		μg/l	< 1	10
limite di quantificaz	zione: 1		incertezza:	

Ordine dei CHIMICI e dei FISICI della Prov. di Treviso n° A093 Codice Fiscale GSTDRN42R12H823B P.IVA 01627660267 Via Pirzio Biroli n.1 - 31046 ODERZO (TV)

Triggiano, 15 dicembre 2020

Certificato n° 20Cl00462

CERTIFICATO ANALISI

Arsenico		μg/l	< 1	10
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016				
limite di quantifica	azione: 1		incertezza:	
Bario		/1	24	
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016		μg/l	31	
limite di quantifica	azione: 1		incertezza: ± 3	
Berillio		μg/l	< 0,3	4
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016			·	
limite di quantifica	azione: 0.3		incertezza:	
<u>'</u>				1
Boro		μg/l	253	1000
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016				
limite di quantifica	azione: 1		incertezza: ± 25	
Cadmio		uall	< 0,3	5
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016		μg/l	< 0,3	5
limite di quantifica	azione: 0,3		incertezza:	
Calcio		mg/l	130	
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016				
limite di quantifica	azione: 0,001		incertezza: ± 13	
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016		μg/l	< 1	50
Metodo di arialisi di rirerimento. UNI EN ISO 17294-2:2016				
limite di quantifica	azione: 1		incertezza:	
Cromo totale		μg/l	< 1	50
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016		F9''	~ 1	
linika di manakifa			: 	
limite di quantifica	azione: 1		incertezza:	
Cromo esavalente		μg/l	< 0,5	5
Metodo di analisi di riferimento: APAT CNR IRSA nº 3150 Man 29 2003			'	•
limite di quantifica	azione: 0,5		incertezza:	
			T	
Ferro Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016		μg/l	< 1	200
wietodo di arialisi di fileriffietito. ONI EN ISO 17294-2:2010				
limite di quantifica	azione: 1		incertezza:	
Magnesio		ma/l	87	
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016		mg/l	01	
limite di quantifica	azione: 0,001		incertezza: ± 9	

Ordine dei CHIMICI e dei FISICI della Prov. di Treviso n° A093 Codice Fiscale GSTDRN42R12H823B P.IVA 01627660267 Via Pirzio Biroli n.1 - 31046 ODERZO (TV)

Triggiano, 15 dicembre 2020

Certificato n° 20Cl00462

CERTIFICATO ANALISI

Manganese	μg/l	< 1	50
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016			I
limite di quantificazione: 1		incertezza:	
lercurio e e e e e e e e e e e e e e e e e e e	μg/l	< 0,1	1
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016			
limite di quantificazione: 0,1		incertezza:	
lolibdeno	ug/l	2,0	
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016	µg/l	2,0	
limite di quantificazione: 1		incertezza: ± 0,	2
lichelio	μg/l	< 1	20
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016			l
limite di quantificazione: 1		incertezza:	
ilmite di quantificazione: 1		incertezza:	
iombo	μg/l	< 1	10
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016		•	-
limite di quantificazione: 1		incertezza:	
otassio	mg/l	22	
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016			
limite di quantificazione: 0,001		incertezza: ± 2	
dame	μg/l	< 1	1000
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016	F3		
limite di quantificazione: 1		incertezza:	
elenio	μg/l	< 0,3	10
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016			<u> </u>
limite di quantificazione: 0,3		incertezza:	
		moortozza.	
odio	mg/l	520	
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016			
limite di quantificazione: 0,001		incertezza: ± 52	!
		4.4	
tagno Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016	μg/l	14	
Microdo di antalisi di Nicilinicillo. Oni EN 150-17294-2.2010			
limite di quantificazione: 1		incertezza: ± 1	
allio	"	< 0.2	2
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016	µg/l	< 0,2	
limite di quantificazione: 0,2		incertezza:	

Ordine dei CHIMICI e dei FISICI della Prov. di Treviso n° A093 Codice Fiscale GSTDRN42R12H823B P.IVA 01627660267 Via Pirzio Biroli n.1 - 31046 ODERZO (TV)

Triggiano, 15 dicembre 2020

Certificato n° 20Cl00462

CERTIFICATO ANALISI

			T	
Tellurio Tellurio		μg/l	< 1	
Metodo di analisi di riferimento: UNI EN ISO 1729	04-2:2016			
	limite di quantificazione: 1		incertezza:	
P				
Vanadio Metodo di analisi di riferimento: UNI EN ISO 1729	24.2:2016	μg/l	< 1	
ivietodo di ariansi di filerimento. Givi Elv 130 1723	77-2.2010			
	limite di quantificazione: 1		incertezza:	
Zinco		μg/l	< 1	3000
Metodo di analisi di riferimento: UNI EN ISO 1729	94-2:2016			
	limite di quantificazione: 1		incertezza:	
	innite di quandicazione.		incertezza.	
Benzene		μg/l	< 0,1	1
Metodo di analisi di riferimento: UNI EN ISO 1568	0:2005			
	limite di quantificazione: 0,1		incertezza:	
			1	
Etilbenzene Metodo di analisi di riferimento: UNI EN ISO 1568	0.0005	μg/l	< 0,1	50
Metodo di analisi di riferimento: UNI EN ISO 1508	0.2005			
	limite di quantificazione: 0,1		incertezza:	
Stirene		μg/l	< 0,1	25
Metodo di analisi di riferimento: UNI EN ISO 1568	0:2005		2,1	
	limite di quantificazione: 0,1		incertezza:	
	innice di quantincazione. U, i		incertezza.	
Toluene		μg/l	< 0,1	15
Metodo di analisi di riferimento: UNI EN ISO 1568	0:2005			
	limite di quantificazione: 0,1		incertezza:	
- Wilana			10.4	10
D-Xilene Metodo di analisi di riferimento: UNI EN ISO 1568	0.2005	μg/l	< 0,1	10
motodo di analioi armoninone. Oni En 100 1000	5.2500			
	limite di quantificazione: 0,1		incertezza:	
Benzo(a)antracene		μg/l	< 0,01	0,1
Metodo di analisi di riferimento: EPA 8270E			2,01	
	limite di quantificazione: 0,01		incertezza:	
	innite di quandicazione. 0,01		incertezza.	
Benzo(a)pirene		µg/I	< 0,001	0,01
Metodo di analisi di riferimento: EPA 8270E				
	limite di quantificazione: 0,001		incertezza:	
200			ا	ı
Benzo(b)fluorantene		μg/l	< 0,01	0,1
Metodo di analisi di riferimento: EPA 8270E				
	limite di quantificazione: 0,01		incertezza:	

Ordine dei CHIMICI e dei FISICI della Prov. di Treviso n° A093 Codice Fiscale GSTDRN42R12H823B P.IVA 01627660267 Via Pirzio Biroli n.1 - 31046 ODERZO (TV)

Triggiano, 15 dicembre 2020

Certificato n° 20Cl00462

CERTIFICATO ANALISI

Benzo(k)fluorantene		μg/l	< 0,005	0,05
Metodo di analisi di riferimento: EPA 8270E				I
limite di qu	antificazione: 0,005		incertezza:	
enzo(g,h,i)perilene		μg/l	< 0,001	0,01
Metodo di analisi di riferimento: EPA 8270E		ру/і	< 0,001	0,01
limite di qu	antificazione: 0,001		incertezza:	
risene		μg/l	< 0,01	5
Metodo di analisi di riferimento: EPA 8270E		рул	< 0,01	3
limite di au	uantificazione: 0,01		incertezza:	
milic di qu	antinoazione. 0,01		moortozza.	
Dibenzo(a,h)antracene		μg/l	< 0,001	0,01
Metodo di analisi di riferimento: EPA 8270E				
limite di qu	antificazione: 0,001		incertezza:	
ndeno(1,2,3-c,d)pirene		μg/l	< 0,01	0,1
Metodo di analisi di riferimento: EPA 8270E			5,5.1	
limite di qu	antificazione: 0,01		incertezza:	
Pirene		μg/l	< 0,01	50
Metodo di analisi di riferimento: EPA 8270E			'	!
limite di qu	nantificazione: 0,01		incertezza:	
ommatoria IPA (punto 38, tabella 2, allegato 5, ti	itolo V d. Lgs 152/2006)	μg/l	< 0,01	0,1
Metodo di analisi di riferimento: EPA 8270E				
limite di qu	nantificazione: 0,01		incertezza:	
Clorometano			104	4.5
Metodo di analisi di riferimento: UNI EN ISO 15680:2005		μg/l	< 0,1	1,5
	15			
iimite ai qu	antificazione: 0,1		incertezza:	
cloroformio (triclorometano)		μg/l	< 0,01	0,15
Metodo di analisi di riferimento: UNI EN ISO 15680:2005				
limite di qu	antificazione: 0,01		incertezza:	
Cloruro di vinile		μg/l	< 0,05	0,5
Metodo di analisi di riferimento: UNI EN ISO 15680:2005			• • •	
limite di qu	nantificazione: 0,05		incertezza:	
,2 - Dicloroetano		uall	< 0,1	3
Metodo di analisi di riferimento: UNI EN ISO 15680:2005		μg/l	< 0,1	
	contifications, 0.1		incorto	
limite ai qu	antificazione: 0,1		incertezza:	

Ordine dei CHIMICI e dei FISICI della Prov. di Treviso n° A093 Codice Fiscale GSTDRN42R12H823B P.IVA 01627660267 Via Pirzio Biroli n.1 - 31046 ODERZO (TV)

Triggiano, 15 dicembre 2020

Certificato n° 20Cl00462

CERTIFICATO ANALISI

1,1 - Dicloroetilene	μg/l	0,195	0,05
Metodo di analisi di riferimento: UNI EN ISO 15680:2005		•	•
limite di quantificazione: 0,005		incertezza: ± 0,029	
ricloroetilene	μg/l	< 0.1	1,5
Metodo di analisi di riferimento: UNI EN ISO 15680:2005	μул	< 0,1	1,5
limite di quantificazione: 0,1		incertezza:	
		0.40	1
etracloroetilene Metodo di analisi di riferimento: UNI EN ISO 15680:2005	μg/l	0,12	1,1
limite di quantificazione: 0,1		incertezza: ± 0,02	
ініне чі цчанинсадоне. у, і		incertezza. ± 0,02	
saclorobutadiene (HCBD)	μg/l	< 0,01	0,15
Metodo di analisi di riferimento: UNI EN ISO 15680:2005			
limite di quantificazione: 0,01		incertezza:	
Sommatoria organoalogenati (punto 47, tabella 2, allegato 5, titolo V d. Lgs	μg/l	<1	10
52/2006) Metodo di analisi di riferimento: UNI EN ISO 15680:2005			
limite di quantificazione: 1		incertezza:	
,1 - Dicloroetano	μg/l	0,14	810
Metodo di analisi di riferimento: UNI EN ISO 15680:2005		•	•
limite di quantificazione: 0,1		incertezza: ± 0,02	
,2 - Dicloroetilene	μg/l	< 0,1	60
Metodo di analisi di riferimento: UNI EN ISO 15680:2005		- /	
limite di quantificazione: 0,1		incertezza:	
,2 - Dicloropropano Metodo di analisi di riferimento: UNI EN ISO 15680:2005	μg/l	< 0,01	0,15
include at analist at the fine title. ON EN ISS 10000.2000			
limite di quantificazione: 0,01		incertezza:	
,1,2 - Tricloroetano	μg/l	< 0,01	0,2
Metodo di analisi di riferimento: UNI EN ISO 15680:2005			•
limite di quantificazione: 0,01		incertezza:	
,2,3 - Tricloropropano	μg/l	< 0,001	0,001
Metodo di analisi di riferimento: UNI EN ISO 15680:2005		'	
limite di quantificazione: 0,001		incertezza:	
,1,2,2 - Tetracloroetano	μg/l	< 0,005	0,05
Metodo di analisi di riferimento: UNI EN ISO 15680:2005	μ9/1	~ V,000	0,05
		in a sub-	
limite di quantificazione: 0,005		incertezza:	

Ordine dei CHIMICI e dei FISICI della Prov. di Treviso n° A093 Codice Fiscale GSTDRN42R12H823B P.IVA 01627660267 Via Pirzio Biroli n.1 - 31046 ODERZO (TV)

Triggiano, 15 dicembre 2020

Certificato n° 20Cl00462

CERTIFICATO ANALISI

ribromometano	μg/l	< 0,01	0,3
Metodo di analisi di riferimento: UNI EN ISO 15680:2005		,	
limite di quantificazione: 0,01		incertezza:	
			ſ
2 - Dibromoetano	μg/l	< 0,001	0,001
Metodo di analisi di riferimento: UNI EN ISO 15680:2005			
limite di quantificazione: 0,001		incertezza:	
ibromoclorometano	μg/l	< 0,01	0,13
Metodo di analisi di riferimento: UNI EN ISO 15680:2005			•
limite di quantificazione: 0,01		incertezza:	
Bromodiclorometano	μg/l	< 0,01	0,17
Metodo di analisi di riferimento: UNI EN ISO 15680:2005		,	
limite di quantificazione: 0,01		incertezza:	
litrobenzene	μg/l	< 0,3	3,5
Metodo di analisi di riferimento: EPA 8260 rev 3 2006	<u> </u>	7 0,0	0,0
limite di quantificazione: 0,3		incertezza:	
,2 - Dinitrobenzene	μg/l	< 0,3	15
Metodo di analisi di riferimento: EPA 8260 rev 3 2006	F-9**	10,0	
limite di quantificazione: 0,3		incertezza:	
1			
,3- dinitrobenzene	μg/l	< 0,3	3,7
Metodo di analisi di riferimento: EPA 8260 rev 3 2006			
limite di quantificazione: 0,3		incertezza:	
loronitrobenzeni (ognumo)	μg/l	< 0,05	0,5
Metodo di analisi di riferimento: EPA 8260 rev 3 2006		.,	
limite di quantificazione: 0,05		incertezza:	
lonoclorobenzene	μg/l	< 0,1	40
Metodo di analisi di riferimento: UNI EN ISO 15680:2005	1.5	5,1	
limite di quantificazione: 0,1		incertezza:	
,2 - diclorobenzene	μg/l	< 0,1	270
Metodo di analisi di riferimento: UNI EN ISO 15680:2005	10.	-,-	1
limite di quantificazione: 0,1		incertezza:	
4 4:1			
,4 - diclorobenzene Metodo di analisi di riferimento: UNI EN ISO 15680:2005	μg/l	< 0,05	0,5
motodo di difundi di monimonio. Gri Eli 100 10000.2000			
limite di quantificazione: 0,05		incertezza:	

Ordine dei CHIMICI e dei FISICI della Prov. di Treviso n° A093 Codice Fiscale GSTDRN42R12H823B P.IVA 01627660267 Via Pirzio Biroli n.1 - 31046 ODERZO (TV)

Triggiano, 15 dicembre 2020

Certificato n° 20Cl00462

CERTIFICATO ANALISI

,2,4 - Triclorobenzene		μg/l	< 0,1	190
Metodo di analisi di riferimento: UNI EN ISO 1568	0:2005	F3**	7 0,1	
	limite di quantificazione: 0,1		incertezza:	
	imite di quantincazione. 0, i		incertezza.	
,2,4,5 - Tetraclorobenzene		μg/l	< 0,1	1,8
Metodo di analisi di riferimento: EPA 8270E			•	•
	limite di quantificazione: 0,1		incertezza:	
entaclorobenzene		μg/l	< 0,5	5
Metodo di analisi di riferimento: EPA 8270E				
	limite di quantificazione: 0,5		incertezza:	
saclorobenzene (HCB)		μg/l	< 0,001	0,01
Metodo di analisi di riferimento: EPA 8270E				
	limite di quantificazione: 0,001		incertezza:	
- clorofenolo		μg/l	<1	180
Metodo di analisi di riferimento: EPA 8270E		L9.1		
	limite di quantificazione: 1		incertezza:	
,4 - Diclorofenolo		μg/l	< 1	110
Metodo di analisi di riferimento: EPA 8270E			,	·
	limite di quantificazione: 1		incertezza:	
,4,6 - Triclorofenolo		μg/l	< 0,5	5
Metodo di analisi di riferimento: EPA 8270E			•	·
	limite di quantificazione: 0,5		incertezza:	
entaclorofenolo		μg/l	< 0,05	0,5
Metodo di analisi di riferimento: EPA 8270E			.,	
	limite di quantificazione: 0,05		incertezza:	
lacior		ug/l	< 0,01	0,1
Metodo di analisi di riferimento: EPA 8270E		μg/l	< 0,01	0,1
	limite di quantificazione: 0,01		incertezza:	
ldrin		μg/l	< 0,003	0,03
Metodo di analisi di riferimento: EPA 8270E		10.	-,	
	limite di quantificazione: 0,003		incertezza:	
trazina		μg/l	< 0,01	0,3
Metodo di analisi di riferimento: EPA 8270E		· -	·	
	limite di quantificazione: 0,01		incertezza:	

Ordine dei CHIMICI e dei FISICI della Prov. di Treviso n° A093 Codice Fiscale GSTDRN42R12H823B P.IVA 01627660267 Via Pirzio Biroli n.1 - 31046 ODERZO (TV)

Triggiano, 15 dicembre 2020

Certificato n° 20Cl00462

CERTIFICATO ANALISI

			T
Alfa-esacioroesano	μg/l	< 0,01	0,1
Metodo di analisi di riferimento: EPA 8270E			
limite di quantificazione: 0,01		incertezza:	
Beta-esacloroesano		1004	0.4
Metodo di analisi di riferimento: EPA 8270E	μg/l	< 0,01	0,1
, , , , , , , , , , , , , , , , , , ,			
limite di quantificazione: 0,01		incertezza:	
Gamma-esacloroesano (lindano)	μg/l	< 0,01	0,1
Metodo di analisi di riferimento: EPA 8270E		,	
limite di quantificazione: 0,01		incertezza:	
Clordano	ug/l	< 0,01	0,1
Metodo di analisi di riferimento: EPA 8270E	μg/l	~ 0,0 I	0,1
limite di quantificazione: 0,01		incertezza:	
DDD, DDT, DDE	μg/l	< 0,01	0,1
Metodo di analisi di riferimento: EPA 8270E			
limite di quantificazione: 0,01		incertezza:	
Dieldrin	μg/l	< 0,003	0,03
Metodo di analisi di riferimento: EPA 8270E			
limite di quantificazione: 0,003		incertezza:	
Endrin	μg/l	< 0,01	0,1
Metodo di analisi di riferimento: EPA 8270E	P9,.	30,01	<u> </u>
limite di quantificazione: 0,01		incertezza:	
Sommatoria fitofarmaci (punto 86, tabella 2, allegato 5, titolo V d. Lgs	μg/l	< 0,05	0,5
152/2006) Metodo di analisi di riferimento: EPA 8270E		,	
limite di quantificazione: 0,05		incertezza:	
Clorpirifos	μg/l	< 0,1	
Metodo di analisi di riferimento: EPA 8270E			
limite di quantificazione: 0,1		incertezza:	
Dimetoato FDA 00325	μg/l	< 0,1	
Metodo di analisi di riferimento: EPA 8270E			
limite di quantificazione: 0,1		incertezza:	
Deltametrina	μg/l	< 0,1	
Metodo di analisi di riferimento: EPA 8270E	µу/і	> 0, 1	
limite di quantificazione: 0,1		incertezza:	

Ordine dei CHIMICI e dei FISICI della Prov. di Treviso n° A093 Codice Fiscale GSTDRN42R12H823B P.IVA 01627660267 Via Pirzio Biroli n.1 - 31046 ODERZO (TV)

Triggiano, 15 dicembre 2020

Certificato n° 20CI00462

CERTIFICATO ANALISI

(valido a tutti gli effetti come da D. L. n° 842/28)

Fention		μg/l	< 0,1	
Metodo di analisi di riferimento: EPA 8270E			•	I
	limite di quantificazione: 0,1		incertezza:	
Oxifluorfen		μg/l	< 0,1	
Metodo di analisi di riferimento: EPA 8270E			•	
	limite di quantificazione: 0,1		incertezza:	
Paration		μg/l	< 0,1	
Metodo di analisi di riferimento: EPA 8270E			·	·
	limite di quantificazione: 0,1		incertezza:	
Simazina		μg/l	< 0,1	
Metodo di analisi di riferimento: EPA 8270E			•	·
	limite di quantificazione: 0,1		incertezza:	
Sommatoria pesticidi fosforati		μg/l	< 0,1	
Metodo di analisi di riferimento: EPA 8270E				
	limite di quantificazione: 0,1		incertezza:	
PCB		μg/l	< 0,001	0,01
Metodo di analisi di riferimento: APAT CNR IRSA	5110 Man 29 2003			
	limite di quantificazione: 0,001		incertezza:	

Note:

La determinazione dei metalli è stata effettuata sul campione filtrato e acidificato. Nel calcolo della concentrazione degli elementi in traccia non viene considerato il recupero determinato dal laboratorio il quale risulta essere compreso tra 90 e 110 %.

L'incertezza di misura riportata nel presente certificato di analisi è espressa come incertezza estesa con un fattore di copertura (k) pari a 2 corrispondente a un livello di fiducia di circa 95%.

I risultati delle analisi si riferiscono ESCLUSIVAMENTE al campione esaminato; si declina ogni responsabilità nei casi di utilizzo del presente atto in difformità agli usi consentiti dalla Legge. Le analisi da eseguire sono state commissionate dal committente e dunque si declina ogni responsabilità in merito alla completezza delle informazioni.

Le analisi sono state eseguite dalla Lifeanalytics S.r.l., accreditato al n. 0128L

Le analisi sono state commissionate ai laboratori del Gruppo LIFEANALYTICS

Lifeanalytics S.r.l.

www.lifeanalytics.it servizioclienti@lifeanalytics.it

Laboratori Conformi alla norma UNI CEI EN ISO/IEC 17025:2018 Laboratori Certificati UNI EN ISO 9001:2015 e UNI EN ISO 14001:2015

Ordine dei CHIMICI e dei FISICI della Prov. di Treviso n° A093 Codice Fiscale GSTDRN42R12H823B P.IVA 01627660267 Via Pirzio Biroli n.1 - 31046 ODERZO (TV)

Triggiano, 15 dicembre 2020

Certificato n° 20Cl00461

CERTIFICATO ANALISI

(valido a tutti gli effetti come da D. L. n° 842/28)

COMMITTENTE: FORMICA AMBIENTE srl - Via Groenlandia 47 - Roma

ETICHETTA: Campione di acqua di falda prelevato dallo scarico **TAF** della discarica per rifiuti non pericolosi sita in c.da Formica (BR)

Data ricezione campione: 24/11/20

Il campione è stato prelevato dal tecnico dello studio CHIMIE Srl, P. Chim. G. Cipriano come da verbale n° 57/11

RISULTATI

PARAMETRO	unità di misura	valore determinato	D. Lgs. 152/06 Tab. 2 allegato 5 alla parte IV Titolo V
pH		7,19	
Metodo di analisi di riferimento: UNI EN ISO 10523:2012		•	•
limite di quantificazione: > 1 e < 13		incertezza: ±	0,12
Temperatura	°C	19,1	
Metodo di analisi di riferimento: APAT CNR IRSA 2100 Man 29 2003		•	<u> </u>
limite di quantificazione: 1		incertezza: ±	0,2
Ossigeno disciolto	mg/l	6,04	
Metodo di analisi di riferimento: Strumentale - Sensore di Ossigeno Disciolto a luminescenza LDO		,	
limite di quantificazione: 0,5		incertezza: ±	0,60
Potenziale Redox	mV	239,4	
Metodo di analisi di riferimento: Strumentale - Sensore ORP			'
limite di quantificazione: 10		incertezza: ±	23,9
Conducibilità	uS/cm a 20 °C	3340	
Metodo di analisi di riferimento: UNI EN 27888:1995			
limite di quantificazione: 10		incertezza: ±	67
1.1 - Dicloroetilene	μg/l	< 0,005	0,05
Metodo di analisi di riferimento: UNI EN ISO 15680:2005		,,,,,,,	
limite di quantificazione: 0,005		incertezza:	
1,2 - Dicloropropano	μg/l	< 0,01	0,15
Metodo di analisi di riferimento: UNI EN ISO 15680:2005		-,	'
limite di quantificazione: 0,01		incertezza:	

Note

L'incertezza di misura riportata nel presente certificato di analisi è espressa come incertezza estesa con un fattore di copertura (k) pari a 2 corrispondente a un livello di fiducia di circa 95%.

I risultati delle analisi si riferiscono ESCLUSIVAMENTE al campione esaminato; si declina ogni responsabilità nei casi di utilizzo del presente atto in difformità agli usi consentiti dalla Legge. Le analisi da eseguire sono state commissionate dal committente e dunque si declina ogni responsabilità in merito alla completezza delle informazioni.

Le analisi sono state eseguite dalla Lifeanalytics S.r.l., accreditato al n. 0128L

Le analisi sono state commissionate ai laboratori del Gruppo LIFEANALYTICS

Lifeanalytics S.r.l.

www.lifeanalytics.it

servizioclienti@lifeanalytics.it

Laboratori Conformi alla norma UNI CEI EN ISO/IEC 17025:2018
Laboratori Certificati UNI EN ISO 9001:2015 e UNI EN ISO 14001:2015

Ordine dei CHIMICI e dei FISICI della Prov. di Treviso n° A093 Codice Fiscale GSTDRN42R12H823B P.IVA 01627660267 Via Pirzio Biroli n.1 - 31046 ODERZO (TV)

Triggiano, 15 dicembre 2020

Certificato n° 20Cl00460

CERTIFICATO ANALISI

(valido a tutti gli effetti come da D. L. nº 842/28)

COMMITTENTE: FORMICA AMBIENTE srl - Via Groenlandia 47 - Roma

ETICHETTA: Campione di acqua di falda prelevato dal pozzo n° PR2 della discarica per rifiuti non pericolosi sita in c.da Formica (BR)

Data ricezione campione: 24/11/20 Profondità della falda: 35,8 m

Il campione è stato prelevato dal tecnico dello studio CHIMIE Srl, P. Chim. G. Cipriano come da verbale n° 57/11

RISULTATI

PARAMETRO	unità di misura	valore determinato	D. Lgs. 152/06 Tab. 2 allegato 5 alla parte IV Titolo V
рН		7,42	
Metodo di analisi di riferimento: UNI EN ISO 10523:2012			
limite di quantificazione: > 1 e < 13		incertezza: ±	0,12
Temperatura	°C	19,4	
Metodo di analisi di riferimento: APAT CNR IRSA 2100 Man 29 2003		•	
limite di quantificazione: 1		incertezza: ±	0,2
Ossigeno disciolto	mg/l	11,20	
Metodo di analisi di riferimento: Strumentale - Sensore di Ossigeno Disciolto a luminescenza LDO			
limite di quantificazione: 0,5		incertezza: ±	1,12
Potenziale Redox	mV	216,9	
Metodo di analisi di riferimento: Strumentale - Sensore ORP			
limite di quantificazione: 10		incertezza: ±	21,7
Conducibilità	uS/cm a 20 °C	3370	
Metodo di analisi di riferimento: UNI EN 27888:1995			'
limite di quantificazione: 10		incertezza: ±	67
1.1 - Dicloroetilene	μg/l	< 0,005	0,05
Metodo di analisi di riferimento: UNI EN ISO 15680:2005		,	
limite di quantificazione: 0,005		incertezza:	
1,2 - Dicloropropano	μg/l	< 0,01	0,15
Metodo di analisi di riferimento: UNI EN ISO 15680:2005		-,-	
limite di quantificazione: 0,01		incertezza:	

Note

L'incertezza di misura riportata nel presente certificato di analisi è espressa come incertezza estesa con un fattore di copertura (k) pari a 2 corrispondente a un livello di fiducia di circa 95%.

I risultati delle analisi si riferiscono ESCLUSIVAMENTE al campione esaminato; si declina ogni responsabilità nei casi di utilizzo del presente atto in difformità agli usi consentiti dalla Legge. Le analisi da eseguire sono state commissionate dal committente e dunque si declina ogni responsabilità in merito alla completezza delle informazioni.

Le analisi sono state eseguite dalla Lifeanalytics S.r.l., accreditato al n. 0128L

Le analisi sono state commissionate ai laboratori del Gruppo LIFEANALYTICS

Lifeanalytics S.r.l.

www.lifeanalytics.it

servizioclienti@lifeanalytics.it
Laboratori Conformi alla norma UNI CEI EN ISO/IEC 17025:2018
Laboratori Certificati UNI EN ISO 9001:2015 e UNI EN ISO 14001:2015

Ordine dei CHIMICI e dei FISICI della Prov. di Treviso n° A093 Codice Fiscale GSTDRN42R12H823B P.IVA 01627660267 Via Pirzio Biroli n.1 - 31046 ODERZO (TV)

Triggiano, 15 dicembre 2020

Certificato n° 20Cl00450

CERTIFICATO ANALISI

(valido a tutti gli effetti come da D. L. n° 842/28)

COMMITTENTE: FORMICA AMBIENTE srl - Via Groenlandia 47 - Roma

ETICHETTA: Campione di acqua di falda prelevato dal pozzo n° 8 della discarica per rifiuti non pericolosi sita in c.da Formica (BR)

Data ricezione campione: 23/11/20 Profondità della falda: 41,7 m

Il campione è stato prelevato dal tecnico dello studio CHIMIE Srl, P. Chim. G. Cipriano come da verbale n° 54/11

RISULTATI

PARAMETRO	unità di misura	valore determinato	D. Lgs. 152/06 Tab. 2 allegato 5 alla parte IV Titolo V
рН		7,16	
Metodo di analisi di riferimento: UNI EN ISO 10523:2012			
limite di quantificazione: > 1 e < 13		incertezza: ±	0,12
Temperatura	°C	20,6	
Metodo di analisi di riferimento: APAT CNR IRSA 2100 Man 29 2003			·
limite di quantificazione: 1		incertezza: ±	0,2
Ossigeno disciolto	mg/l	4,78	
Metodo di analisi di riferimento: Strumentale - Sensore di Ossigeno Disciolto a luminescenza LDO			•
limite di quantificazione: 0,5		incertezza: ±	0,48
Potenziale Redox	mV	164,5	
Metodo di analisi di riferimento: Strumentale - Sensore ORP			
limite di quantificazione: 10		incertezza: ±	16,5
Conducibilità	uS/cm a 20 °C	3470	
Metodo di analisi di riferimento: UNI EN 27888:1995			•
limite di quantificazione: 10		incertezza: ±	69
Ossidabilità O2	mg/l	0,70	
Metodo di analisi di riferimento: metodo Tritrimetrico (secondo Kubel), ISTISAN 07/31			•
limite di quantificazione: 0,5		incertezza: ±	0,06
Domanda biochimica di ossigeno (BOD5) a 20°C senza nitrificazione	mgO ₂ /I	< 0,5	
Metodo di analisi di riferimento: APAT CNR IRSA 5120 Man 29 2003		*	1
limite di quantificazione: 0,5		incertezza:	
Carbonio organico totale (TOC)	mg/l	0,3	
Metodo di analisi di riferimento: APAT CNR IRSA 5040 Man 29 2003			1
limite di quantificazione: 0,1		incertezza: ±	0,1

Ordine dei CHIMICI e dei FISICI della Prov. di Treviso n° A093 Codice Fiscale GSTDRN42R12H823B P.IVA 01627660267 Via Pirzio Biroli n.1 - 31046 ODERZO (TV)

Triggiano, 15 dicembre 2020

Certificato n° 20CI00450

CERTIFICATO ANALISI

Durezza totale		°F	65		
Metodo di analisi di riferimento: APAT CNR IRSA 2040 A Man 29 2003					
limite di quanti	ficazione: 5		incertezza: ±	1	
ianuri		μg/l	< 1		50
Metodo di analisi di riferimento: APAT CNR IRSA 4070 Man 29 2003					
limite di quanti	ficazione: 1		incertezza:		
luoruri Metodo di analisi di riferimento: UNI EN ISO 10304-1:2009		mg/l	0,33		1,5
Metodo di analisi di riferimento: UNI EN ISO 10304-1:2009					
limite di quanti	ficazione: 0,1		incertezza: ±	0,03	
itriti come NO2		ua/l	< 50		500
Metodo di analisi di riferimento: UNI EN ISO 10304-1:2009		μg/l	\ 30		500
2.0.2.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0					
limite di quanti	ficazione: 50		incertezza:		
olfati		mg/l	151		250
Metodo di analisi di riferimento: UNI EN ISO 10304-1:2009		9/.	101		
limite di quanti	ficazione: 0,1		incertezza: ±	15	
loruri		mg/l	923		
Metodo di analisi di riferimento: UNI EN ISO 10304-1:2009					
limite di quanti	ficazione: 0.1		incertezza: ±	02	
ште и чани	incazione. 0, i		IIICertezza. 1	32	
itrati come NO3		mg/l	23		
Metodo di analisi di riferimento: UNI EN ISO 10304-1:2009					
limite di quanti	ficazione: 0,1		incertezza: ±	2	
	·				
mmoniaca come NH4		mg/l	< 0,05		
Metodo di analisi di riferimento: UNICHIM 2363:2009					
limite di quanti	ficazione: 0,05		incertezza:		
II and the					
Illuminio Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016		μg/l	<1		200
Weldud di analisi di filerimento. Oni En 130 17294-2.2010					
limite di quanti	ficazione: 1		incertezza:		
ntimonio		μg/l	< 0,3	T	5
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016		µд/1	~ U,3		
limite di quanti	ficazione: 0,3		incertezza:		
rgento		<u>μ</u> g/l	< 1		10
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016			- 1		10
limite di quanti	ficazione: 1		incertezza:		

Ordine dei CHIMICI e dei FISICI della Prov. di Treviso n° A093 Codice Fiscale GSTDRN42R12H823B P.IVA 01627660267 Via Pirzio Biroli n.1 - 31046 ODERZO (TV)

Triggiano, 15 dicembre 2020

Certificato n° 20CI00450

CERTIFICATO ANALISI

Arsenico	μg/l	< 1	10
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016			
limite di quantificazione: 1		incertezza:	
Bario	μg/l	28	
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016		20	
limite di quantificazione: 1		incertezza: ± 3	
iittite u quantincaziore. T		IIICertezza. i 3	'
Berillio	μg/l	< 0,3	4
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016			
limite di quantificazione: 0,3		incertezza:	
Boro	ug/l	131	1000
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016	μg/l	131	1000
, a , a , a , a , a , a , a , a , a , a		:	2
limite di quantificazione: 1		incertezza: ± 1	3
Cadmio	μg/l	< 0,3	5
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016		<u>.</u>	•
limite di quantificazione: 0,3		incertezza:	
Calcio		404	
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016	mg/l	134	
limite di quantificazione: 0,001		incertezza: ± 1	3
Cobalto	μg/l	< 1	50
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016			<u> </u>
limite di quantificazione: 1		incertezza:	
Cromo totale Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016	μg/l	<1	50
ivietodo di analisi di Ilierimento. Otti Eli 130 17257-2.2010			
limite di quantificazione: 1		incertezza:	
Cromo esavalente	μg/l	< 0,5	5
Metodo di analisi di riferimento: APAT CNR IRSA n° 3150 Man 29 2003		,	
limite di quantificazione: 0,5		incertezza:	
			T
erro	μg/l	<1	200
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016			
limite di quantificazione: 1		incertezza:	
lagnesio	mg/l	77	
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016		***	
		t	
limite di quantificazione: 0,001		incertezza: ± 8	

Ordine dei CHIMICI e dei FISICI della Prov. di Treviso n° A093 Codice Fiscale GSTDRN42R12H823B P.IVA 01627660267 Via Pirzio Biroli n.1 - 31046 ODERZO (TV)

Triggiano, 15 dicembre 2020

Certificato n° 20CI00450

CERTIFICATO ANALISI

langanese	μg/l	< 1	50
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016			
limite di quantificazione: 1		incertezza:	
			<u> </u>
lercurio Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016	μg/l	< 0,1	1
Weldud dranaisi driniennen. Olvi Elviso 1729+2.2010			
limite di quantificazione: 0,1		incertezza:	
lolibdeno	μg/l	3,0	
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016	13	5,5	
limite di monetti conince d		it	
limite di quantificazione: 1		incertezza: ± 0,3	
lichelio	μg/l	< 1	20
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016		•	'
limite di quantificazione: 1		incertezza:	
		Ī	T
liombo	μg/l	< 1	10
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016			
limite di quantificazione: 1		incertezza:	
Potassio	mg/l	20	
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016	9/1	20	
limite di quantificazione: 0,001		incertezza: ± 2	
Rame	μg/l	< 1	1000
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016		•	•
limite di quantificazione: 1		incertezza:	
Selenio Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016	μg/l	< 0,3	10
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016			
limite di quantificazione: 0,3		incertezza:	
odio	mg/l	445	
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016	9/1	770	
limite di quantificazione: 0,001		incertezza: ± 45	
itagno	μg/l	25	
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016		· · · · · · · · · · · · · · · · · · ·	
limite di quantificazione: 1		incertezza: ± 3	
allio	μg/l	< 0,2	2
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016			

Ordine dei CHIMICI e dei FISICI della Prov. di Treviso n° A093 Codice Fiscale GSTDRN42R12H823B P.IVA 01627660267 Via Pirzio Biroli n.1 - 31046 ODERZO (TV)

Triggiano, 15 dicembre 2020

Certificato n° 20CI00450

CERTIFICATO ANALISI

Tellurio Tellurio		μg/l	< 1	
Metodo di analisi di riferimento: UNI EN ISO 1729	94-2:2016			
	limite di quantificazione: 1		incertezza:	
/anadio		ua/l	2.0	
Metodo di analisi di riferimento: UNI EN ISO 172:	94-2:2016	μg/l	3,8	
	limite di quantificazione: 1		incertezza: ± 0,4	
Zinco		μg/l	4,6	3000
Metodo di analisi di riferimento: UNI EN ISO 1729	94-2:2016		l	
	limite di quantificazione: 1		incertezza: ± 0,5	
	· ·			1
Benzene		μg/l	< 0,1	1
Metodo di analisi di riferimento: UNI EN ISO 1568	0:2005			
	limite di quantificazione: 0,1		incertezza:	
Etilbenzene		ua/l	< 0,1	50
Metodo di analisi di riferimento: UNI EN ISO 1568	10:2005	μg/l	\ 0,1	50
	limite di quantificazione: 0,1		incertezza:	
Stirene		μg/l	< 0,1	25
Metodo di analisi di riferimento: UNI EN ISO 1568	20:2005			L
	limite di quantificazione: 0,1		incertezza:	
Foluene Foluene		μg/l	< 0,1	15
Metodo di analisi di riferimento: UNI EN ISO 1568	0:2005			
	limite di quantificazione: 0,1		incertezza:	
o-Xilene		ua/l	< 0.1	10
Metodo di analisi di riferimento: UNI EN ISO 1568	0:2005	μg/l	< 0,1	10
	limite di quantificazione: 0,1		incertezza:	
Benzo(a)antracene		μg/l	< 0,01	0,1
Metodo di analisi di riferimento: EPA 8270E				
	limite di quantificazione: 0,01		incertezza:	
	. 177			ı
Benzo(a)pirene		μg/l	< 0,001	0,01
Metodo di analisi di riferimento: EPA 8270E				
	limite di quantificazione: 0,001		incertezza:	
4.40				
Benzo(b)fluorantene Metodo di analisi di riferimento: EPA 8270E		μg/l	< 0,01	0,1
ivictodo di ariansi di frieffiffetilo. EFA 02/UE				
	limite di quantificazione: 0,01		incertezza:	

Ordine dei CHIMICI e dei FISICI della Prov. di Treviso n° A093 Codice Fiscale GSTDRN42R12H823B P.IVA 01627660267 Via Pirzio Biroli n.1 - 31046 ODERZO (TV)

Triggiano, 15 dicembre 2020

Certificato n° 20CI00450

CERTIFICATO ANALISI

Benzo(k)fluorantene		μg/l	< 0,005	0,05
Metodo di analisi di riferimento: EPA 8270E				
limit	te di quantificazione: 0,005		incertezza:	
Benzo(g,h,i)perilene		μg/l	< 0,001	0,01
Metodo di analisi di riferimento: EPA 8270E				
limit	te di quantificazione: 0,001		incertezza:	
Crisene		μg/l	< 0,01	5
Metodo di analisi di riferimento: EPA 8270E		F9,.	10,01	
limit	te di quantificazione: 0,01		incertezza:	
Dibenzo(a,h)antracene		μg/l	< 0,001	0,01
Metodo di analisi di riferimento: EPA 8270E				ļ
limit	te di quantificazione: 0,001		incertezza:	
Indeno(1,2,3-c,d)pirene		μg/l	< 0,01	0,1
Metodo di analisi di riferimento: EPA 8270E				
limit	te di quantificazione: 0,01		incertezza:	
Pirene		//	< 0.04	50
Metodo di analisi di riferimento: EPA 8270E		μg/l	< 0,01	50
limit	te di quantificazione: 0,01		incertezza:	
Sommatoria IPA (punto 38, tabella 2, allegato	5, titolo V d. Lgs 152/2006)	μg/l	< 0,01	0,1
Metodo di analisi di riferimento: EPA 8270E	,		,	<u> </u>
limit	te di quantificazione: 0,01		incertezza:	
""""	to a quantineazione. 0,01		mocrtezza.	
Clorometano		μg/l	< 0,1	1,5
Metodo di analisi di riferimento: UNI EN ISO 15680:2005				
limit	te di quantificazione: 0,1		incertezza:	
Cloroformio (triclorometano)		μg/l	< 0,01	0,15
Metodo di analisi di riferimento: UNI EN ISO 15680:2005				
limit	te di quantificazione: 0,01		incertezza:	
Olement distrib				
Cloruro di vinile Metodo di analisi di riferimento: UNI EN ISO 15680:2005		μg/l	< 0,05	0,5
microdo di analisi di meninetilo. UNI EN 130 13060.2005				
limit	te di quantificazione: 0,05		incertezza:	
1,2 - Dicloroetano		μg/l	< 0,1	3
Metodo di analisi di riferimento: UNI EN ISO 15680:2005		ra''	- 0,1	
limit	te di quantificazione: 0,1		incertezza:	

Ordine dei CHIMICI e dei FISICI della Prov. di Treviso n° A093 Codice Fiscale GSTDRN42R12H823B P.IVA 01627660267 Via Pirzio Biroli n.1 - 31046 ODERZO (TV)

Triggiano, 15 dicembre 2020

Certificato n° 20CI00450

CERTIFICATO ANALISI

1,1 - Dicloroetilene	μg/l	0,275	0,05
Metodo di analisi di riferimento: UNI EN ISO 15680:2005			•
limite di quantificazione: 0,005		incertezza: ± 0,041	
			T
ricloroetilene	μg/l	< 0,1	1,5
Metodo di analisi di riferimento: UNI EN ISO 15680:2005			
limite di quantificazione: 0,1		incertezza:	
etracloroetilene	μg/l	0,21	1,1
Metodo di analisi di riferimento: UNI EN ISO 15680:2005	μ9/1	0,21	1,1
limite di quantificazione: 0,1		incertezza: ± 0,03	
			1
Saclorobutadiene (HCBD) Metodo di analisi di riferimento: UNI EN ISO 15680:2005	μg/l	< 0,01	0,15
ivietuuo ai ariarisi ai Hieririrerita. Otvi Eiv 130 13000.2005			
limite di quantificazione: 0,01		incertezza:	
ommatoria organoalogenati (punto 47, tabella 2, allegato 5, titolo V d. Lgs			
52/2006)	μg/l	< 1	10
Metodo di analisi di riferimento: UNI EN ISO 15680:2005		'	-
limite di quantificazione: 1		incertezza:	
4. Bullion to a		2 = 2	1
,1 - Dicloroetano Metodo di analisi di riferimento: UNI EN ISO 15680:2005	μg/l	0,72	810
Metodo di analisi di filerimento. Otti EN 130 13000.2003			
limite di quantificazione: 0,1		incertezza: ± 0,11	
,2 - Dicloroetilene	μg/l	< 0,1	60
Metodo di analisi di riferimento: UNI EN ISO 15680:2005		3,1	
limite di monetificazione 0.4			
limite di quantificazione: 0,1		incertezza:	
,2 - Dicloropropano	μg/l	< 0,01	0,15
Metodo di analisi di riferimento: UNI EN ISO 15680:2005		'	'
limite di quantificazione: 0,01		incertezza:	
4.0. Triplementary		. 0. 0.1	1
,1,2 - Tricloroetano Metodo di analisi di riferimento: UNI EN ISO 15680:2005	μg/l	< 0,01	0,2
metada di diranti di finali matta di Cara Erra da Cara Er			
limite di quantificazione: 0,01		incertezza:	
,2,3 - Tricloropropano	μg/l	< 0,001	0,001
Metodo di analisi di riferimento: UNI EN ISO 15680:2005		•	I
limite di quantificazione: 0,001		incertezza:	
,1,2,2 - Tetracloroetano	μg/l	< 0,005	0,05
Metodo di analisi di riferimento: UNI EN ISO 15680:2005			
limite di quantificazione: 0,005		incertezza:	·

Ordine dei CHIMICI e dei FISICI della Prov. di Treviso n° A093 Codice Fiscale GSTDRN42R12H823B P.IVA 01627660267 Via Pirzio Biroli n.1 - 31046 ODERZO (TV)

Triggiano, 15 dicembre 2020

Certificato n° 20CI00450

CERTIFICATO ANALISI

ribromometano	μg/l	< 0,01	0,3
Metodo di analisi di riferimento: UNI EN ISO 15680:2005	13	3,01	
limite di quantificazione: 0,01		incertezza:	
iiinite di quantineazione. 0,01		mocrtezza.	
,2 - Dibromoetano	μg/l	< 0,001	0,001
Metodo di analisi di riferimento: UNI EN ISO 15680:2005			
limite di quantificazione: 0,001		incertezza:	
ibromoclorometano	μg/l	< 0,01	0,13
Metodo di analisi di riferimento: UNI EN ISO 15680:2005		'	'
limite di quantificazione: 0,01		incertezza:	
Bromodiclorometano	μg/l	< 0,01	0,17
Metodo di analisi di riferimento: UNI EN ISO 15680:2005		·	
limite di quantificazione: 0,01		incertezza:	
litrobenzene	μg/l	< 0,3	3,5
Metodo di analisi di riferimento: EPA 8260 rev 3 2006	рул	\(\mathcal{0},3\)	3,5
limite di quantificazione: 0,3		incertezza:	
,2 - Dinitrobenzene	μg/l	< 0,3	15
Metodo di analisi di riferimento: EPA 8260 rev 3 2006			•
limite di quantificazione: 0,3		incertezza:	
,3- dinitrobenzene	μg/l	< 0,3	3,7
Metodo di analisi di riferimento: EPA 8260 rev 3 2006			
limite di quantificazione: 0,3		incertezza:	
Cloronitrobenzeni (ognumo) Metodo di analisi di riferimento: EPA 8260 rev 3 2006	μg/l	< 0,05	0,5
Metodo di analisi di Menmento. EFA 6200 lev 3 2000			
limite di quantificazione: 0,05		incertezza:	
lonoclorobenzene	μg/l	< 0,1	40
Metodo di analisi di riferimento: UNI EN ISO 15680:2005		'	'
limite di quantificazione: 0,1		incertezza:	
,2 - diclorobenzene	"	< 0.1	070
Metodo di analisi di riferimento: UNI EN ISO 15680:2005	µg/l	< 0,1	270
		incortozza	
limite di quantificazione: 0,1		incertezza:	
,4 - diclorobenzene	μg/l	< 0,05	0,5
Metodo di analisi di riferimento: UNI EN ISO 15680:2005			
limite di quantificazione: 0,05	<u> </u>	incertezza:	

Ordine dei CHIMICI e dei FISICI della Prov. di Treviso n° A093 Codice Fiscale GSTDRN42R12H823B P.IVA 01627660267 Via Pirzio Biroli n.1 - 31046 ODERZO (TV)

Triggiano, 15 dicembre 2020

Certificato n° 20CI00450

CERTIFICATO ANALISI

,2,4 - Triclorobenzene		μg/l	< 0,1	190
Metodo di analisi di riferimento: UNI EN ISO 1568	0:2005			•
	limite di quantificazione: 0,1		incertezza:	
				1
2,4,5 - Tetraclorobenzene Metodo di analisi di riferimento: EPA 8270E		μg/l	< 0,1	1,8
Metodo di analisi di Menmento. EPA 6270E				
	limite di quantificazione: 0,1		incertezza:	
entaclorobenzene		μg/l	< 0,5	5
Metodo di analisi di riferimento: EPA 8270E			'	'
	limite di quantificazione: 0,5		incertezza:	
saclorobenzene (HCB)		μg/l	< 0,001	0,01
Metodo di analisi di riferimento: EPA 8270E				
	limite di quantificazione: 0,001		incertezza:	
- clorofenolo		μg/l	< 1	180
Metodo di analisi di riferimento: EPA 8270E		F97.	* 1	
	limite di quantificazione: 1		incertezza:	
4 - Diclorofenolo		μg/l	< 1	110
Metodo di analisi di riferimento: EPA 8270E				
	limite di quantificazione: 1		incertezza:	
4,6 - Triclorofenolo		μg/l	< 0,5	5
Metodo di analisi di riferimento: EPA 8270E				
	limite di quantificazione: 0,5		incertezza:	
entaclorofenolo		μg/l	< 0,05	0,5
Metodo di analisi di riferimento: EPA 8270E		13	3,00	.,.
	limite di quantificazione: 0,05		incertezza:	
laclor		μg/l	< 0,01	0,1
Metodo di analisi di riferimento: EPA 8270E			- 0,01	
	limite di quantificazione: 0,01		incertezza:	
ldrin		μg/l	< 0,003	0,03
Metodo di analisi di riferimento: EPA 8270E		L9.,	,	1 2,00
	limite di quantificazione: 0,003		incertezza:	
function a			10.04	
trazina Metodo di analisi di riferimento: EPA 8270E		µg/l	< 0,01	0,3
stodd di didaidi di Indianond. El A 0210E				
	limite di quantificazione: 0,01		incertezza:	

Ordine dei CHIMICI e dei FISICI della Prov. di Treviso n° A093 Codice Fiscale GSTDRN42R12H823B P.IVA 01627660267 Via Pirzio Biroli n.1 - 31046 ODERZO (TV)

Triggiano, 15 dicembre 2020

Certificato n° 20Cl00450

CERTIFICATO ANALISI

			T
Alfa-esacioroesano	μg/l	< 0,01	0,1
Metodo di analisi di riferimento: EPA 8270E			
limite di quantificazione: 0,01		incertezza:	
Beta-esacloroesano		1004	0.4
Metodo di analisi di riferimento: EPA 8270E	μg/l	< 0,01	0,1
, , , , , , , , , , , , , , , , , , ,			
limite di quantificazione: 0,01		incertezza:	
Gamma-esacloroesano (lindano)	μg/l	< 0,01	0,1
Metodo di analisi di riferimento: EPA 8270E		,	
limite di quantificazione: 0,01		incertezza:	
Clordano	ug/l	< 0,01	0,1
Metodo di analisi di riferimento: EPA 8270E	μg/l	~ 0,0 I	0,1
limite di quantificazione: 0,01		incertezza:	
DDD, DDT, DDE	μg/l	< 0,01	0,1
Metodo di analisi di riferimento: EPA 8270E			
limite di quantificazione: 0,01		incertezza:	
Dieldrin	μg/l	< 0,003	0,03
Metodo di analisi di riferimento: EPA 8270E			
limite di quantificazione: 0,003		incertezza:	
Endrin	μg/l	< 0,01	0,1
Metodo di analisi di riferimento: EPA 8270E	P9,.	30,01	<u> </u>
limite di quantificazione: 0,01		incertezza:	
Sommatoria fitofarmaci (punto 86, tabella 2, allegato 5, titolo V d. Lgs	μg/l	< 0,05	0,5
152/2006) Metodo di analisi di riferimento: EPA 8270E		,	
limite di quantificazione: 0,05		incertezza:	
Clorpirifos	μg/l	< 0,1	
Metodo di analisi di riferimento: EPA 8270E			
limite di quantificazione: 0,1		incertezza:	
Dimetoato FDA 00325	μg/l	< 0,1	
Metodo di analisi di riferimento: EPA 8270E			
limite di quantificazione: 0,1		incertezza:	
Deltametrina	μg/l	< 0,1	
Metodo di analisi di riferimento: EPA 8270E	µу/і	~ 0, 1	
limite di quantificazione: 0,1		incertezza:	

Ordine dei CHIMICI e dei FISICI della Prov. di Treviso n° A093 Codice Fiscale GSTDRN42R12H823B P.IVA 01627660267 Via Pirzio Biroli n.1 - 31046 ODERZO (TV)

Triggiano, 15 dicembre 2020

Certificato n° 20CI00450

CERTIFICATO ANALISI

(valido a tutti gli effetti come da D. L. n° 842/28)

Fention		μg/l	< 0,1	
Metodo di analisi di riferimento: EPA 8270E				1
	limite di quantificazione: 0,1		incertezza:	
Oxifluorfen		μg/l	< 0,1	
Metodo di analisi di riferimento: EPA 8270E			· ·	,
	limite di quantificazione: 0,1		incertezza:	
Paration		μg/l	< 0,1	
Metodo di analisi di riferimento: EPA 8270E				
	limite di quantificazione: 0,1		incertezza:	
Simazina		μg/l	< 0,1	
Metodo di analisi di riferimento: EPA 8270E				,
	limite di quantificazione: 0,1		incertezza:	
Sommatoria pesticidi fosforati		μg/l	< 0,1	
Metodo di analisi di riferimento: EPA 8270E			•	•
	limite di quantificazione: 0,1		incertezza:	
PCB		μg/l	< 0,001	0,01
Metodo di analisi di riferimento: APAT CNR IRSA	5110 Man 29 2003			
	limite di quantificazione: 0,001		incertezza:	

Note:

La determinazione dei metalli è stata effettuata sul campione filtrato e acidificato. Nel calcolo della concentrazione degli elementi in traccia non viene considerato il recupero determinato dal laboratorio il quale risulta essere compreso tra 90 e 110 %.

L'incertezza di misura riportata nel presente certificato di analisi è espressa come incertezza estesa con un fattore di copertura (k) pari a 2 corrispondente a un livello di fiducia di circa 95%.

I risultati delle analisi si riferiscono ESCLUSIVAMENTE al campione esaminato; si declina ogni responsabilità nei casi di utilizzo del presente atto in difformità agli usi consentiti dalla Legge. Le analisi da eseguire sono state commissionate dal committente e dunque si declina ogni responsabilità in merito alla completezza delle informazioni.

Le analisi sono state eseguite dalla Lifeanalytics S.r.l., accreditato al n. 0128L

Le analisi sono state commissionate ai laboratori del Gruppo LIFEANALYTICS

Lifeanalytics S.r.l.

www.lifeanalytics.it
servizioclienti@lifeanalytics.it
Laboratori Conformi alla norma UNI CEI EN ISO/IEC 17025:2018
Laboratori Certificati UNI EN ISO 9001:2015 e UNI EN ISO 14001:2015

Ordine dei CHIMICI e dei FISICI della Prov. di Treviso n° A093 Codice Fiscale GSTDRN42R12H823B P.IVA 01627660267 Via Pirzio Biroli n.1 - 31046 ODERZO (TV)

Triggiano, 15 dicembre 2020

Certificato n° 20CI00449

CERTIFICATO ANALISI

(valido a tutti gli effetti come da D. L. n° 842/28)

COMMITTENTE: FORMICA AMBIENTE srl - Via Groenlandia 47 - Roma

ETICHETTA: Campione di acqua di falda prelevato dal pozzo n° 4 della discarica per rifiuti non pericolosi sita in c.da Formica (BR)

Data ricezione campione: 23/11/20 Profondità della falda: 43,5 m

Il campione è stato prelevato dal tecnico dello studio CHIMIE Srl, P. Chim. G. Cipriano come da verbale n° 54/11

RISULTATI

PARAMETRO	unità di misura	valore determinato	D. Lgs. 152/06 Tab. 2 allegato 5 alla parte IV Titolo V
рН		7,10	
Metodo di analisi di riferimento: UNI EN ISO 10523:2012			•
limite di quantificazione: > 1 e < 13		incertezza: ±	0,12
Temperatura	°C	20,6	
Metodo di analisi di riferimento: APAT CNR IRSA 2100 Man 29 2003			·
limite di quantificazione: 1		incertezza: ±	0,2
Ossigeno disciolto	mg/l	5,33	
Metodo di analisi di riferimento: Strumentale - Sensore di Ossigeno Disciolto a luminescenza LDO			·
limite di quantificazione: 0,5		incertezza: ±	0,53
Potenziale Redox	mV	205,2	
Metodo di analisi di riferimento: Strumentale - Sensore ORP			
limite di quantificazione: 10		incertezza: ±	20,5
Conducibilità	uS/cm a 20 °C	2880	
Metodo di analisi di riferimento: UNI EN 27888:1995			•
limite di quantificazione: 10		incertezza: ±	58
Ossidabilità O2	mg/l	< 0,5	
Metodo di analisi di riferimento: metodo Tritrimetrico (secondo Kubel), ISTISAN 07/31			•
limite di quantificazione: 0,5		incertezza:	
Domanda biochimica di ossigeno (BOD5) a 20°C senza nitrificazione	mgO ₂ /I	< 0,5	
Metodo di analisi di riferimento: APAT CNR IRSA 5120 Man 29 2003			1
limite di quantificazione: 0,5		incertezza:	
Carbonio organico totale (TOC)	mg/l	0,3	
Metodo di analisi di riferimento: APAT CNR IRSA 5040 Man 29 2003		-	'
limite di quantificazione: 0,1		incertezza: ±	0,1

Ordine dei CHIMICI e dei FISICI della Prov. di Treviso n° A093 Codice Fiscale GSTDRN42R12H823B P.IVA 01627660267 Via Pirzio Biroli n.1 - 31046 ODERZO (TV)

Triggiano, 15 dicembre 2020

Certificato n° 20Cl00449

CERTIFICATO ANALISI

		I	ı
Durezza totale	° F	50	
Metodo di analisi di riferimento: APAT CNR IRSA 2040 A Man 29 2003			
limite di quantificazione: 5		incertezza: ± 1	
01.00			
Cianuri Metodo di analisi di riferimento: APAT CNR IRSA 4070 Man 29 2003	μg/l	< 1	50
MELOUG UI AITAIISI UI TIIETIITIETIIU. AFAT CIVA INSA 4070 Matt 29 2003			
limite di quantificazione: 1		incertezza:	
Fluoruri	mg/l	0,23	1,5
Metodo di analisi di riferimento: UNI EN ISO 10304-1:2009	mg/i	0,23	1,0
limite di quantificazione: 0,1		incertezza: ± 0	,02
Nitriti come NO2	μg/l	< 50	500
Metodo di analisi di riferimento: UNI EN ISO 10304-1:2009	13		
Harita di annatità di 190		ings-t	
limite di quantificazione: 50		incertezza:	
Solfati	mg/l	118	250
Metodo di analisi di riferimento: UNI EN ISO 10304-1:2009		l.	
limite di quantificazione: 0,1		incertezza: ± 1	2
ilinite di quantificazione. 0,1		incertezza. 1	2
Cloruri	mg/l	758	
Metodo di analisi di riferimento: UNI EN ISO 10304-1:2009			·
limite di quantificazione: 0,1		incertezza: ± 7	6
			1
Nitrati come NO3	mg/l	42	
Metodo di analisi di riferimento: UNI EN ISO 10304-1:2009			
limite di quantificazione: 0,1		incertezza: ± 4	
			1
Ammoniaca come NH4 Metodo di analisi di riferimento: UNICHIM 2363:2009	mg/l	< 0,05	
Metodo di analisi di Hierimento. Ontonimi 2363.2009			
limite di quantificazione: 0,05		incertezza:	
Alluminio		< 1	200
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016	μg/l	<u> </u>	200
limite di quantificazione: 1		incertezza:	
Antimonio	μg/l	3,8	5
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016		-,-	
limite di quantificazione: 0,3		incertezza: ± 0	,4
Argento	μg/l	< 1	10
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016			
Enter at account to		ings-t	
limite di quantificazione: 1		incertezza:	

Ordine dei CHIMICI e dei FISICI della Prov. di Treviso n° A093 Codice Fiscale GSTDRN42R12H823B P.IVA 01627660267 Via Pirzio Biroli n.1 - 31046 ODERZO (TV)

Triggiano, 15 dicembre 2020

Certificato n° 20Cl00449

CERTIFICATO ANALISI

Arsenico		< 1	10
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016	μg/l	< 1	10
limite di quantificazione: 1		incertezza:	
ario	μg/l	23	
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016			
limite di quantificazione: 1		incertezza: ±	2
12.4H2.			Ι.
Berillio Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016	μg/l	< 0,3	4
Webdo di didilisi di Ilicrimono.			
limite di quantificazione: 0,3		incertezza:	
Soro	μg/l	96	1000
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016			
limite di quantificazione: 1		incertezza: ±	10
admio Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016	μg/l	< 0,3	5
Metodo di arialisi di filerimento. UNI EN 150-17294-2.2016			
limite di quantificazione: 0,3		incertezza:	
alcio	mg/l	105	
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016			l
limite di quantificazione: 0,001		incertezza: ±	11
Cobalto	μg/l	< 1	50
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016			I
limite di quantificazione: 1		incertezza:	
romo totale	μg/l	< 1	50
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016			
limite di quantificazione: 1		incertezza:	
romo esavalente	μg/l	< 0,5	5
Metodo di analisi di riferimento: APAT CNR IRSA n° 3150 Man 29 2003		٥,٥	
limite di quantificazione: 0,5		incertezza:	
			ı
erro Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016	μg/l	38	200
MICROSO DI ANAINSI DI INICINICINO. DIVI EN 130 17294-2.2010			
limite di quantificazione: 1		incertezza: ±	4
lagnesio	mg/l	58	
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016	<u> </u>		ļ
limite di quantificazione: 0,001		incertezza: ±	6
ilffille di quantificazione: 0,001		iiiceilezza. ±	0

Ordine dei CHIMICI e dei FISICI della Prov. di Treviso n° A093 Codice Fiscale GSTDRN42R12H823B P.IVA 01627660267 Via Pirzio Biroli n.1 - 31046 ODERZO (TV)

Triggiano, 15 dicembre 2020

Certificato n° 20Cl00449

CERTIFICATO ANALISI

Manganese		μg/l	< 1	50
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016				·
limite di quantifica	zione: 1		incertezza:	
Marauria		//	-0.4	1 4
Mercurio Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016		μg/l	< 0,1	1
limite di quantifica	zione: 0,1		incertezza:	
Molibdeno		μg/l	3,0	
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016			<u>'</u>	
limite di quantifica	zione: 1		incertezza: ± 0,3	
Nichelio		μg/l	< 1	20
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016		1 3		
limite di quantifica	zione: 1		incertezza:	
пппе и филипса	zione. 1		incertezza.	
Piombo		μg/l	< 1	10
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016				
limite di quantifica	zione: 1		incertezza:	
Potassio		mg/l	20	
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016				
limite di quantifica	zione: 0,001		incertezza: ± 2	
Rame		μg/l	< 1	100
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016				
limite di quantifica	zione: 1		incertezza:	
iiiiic di qualitica	2010. 1		moortozza.	
Selenio		μg/l	< 0,3	10
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016				
limite di quantifica	zione: 0,3		incertezza:	
Sodio		mg/l	349	
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016		mg/i	349	
limite di quantifica	Tione: 0.001		incertezza: ± 35	
limite di quantifica	zione: 0,001		incertezza: ± 35	
Stagno		μg/l	22	
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016				
limite di quantifica	zione: 1		incertezza: ± 2,2	
Tallio		μg/l	< 0,2	2
Metodo di analisi di riferimento: UNI EN ISO 17294-2:2016		P9/1	- 0,2	
, , , , , , , , , , , , , , , , , , ,	-i 0.0		:	
limite di quantifica	zione: U,2		incertezza:	

Ordine dei CHIMICI e dei FISICI della Prov. di Treviso n° A093 Codice Fiscale GSTDRN42R12H823B P.IVA 01627660267 Via Pirzio Biroli n.1 - 31046 ODERZO (TV)

Triggiano, 15 dicembre 2020

Certificato n° 20Cl00449

CERTIFICATO ANALISI

		<u> </u>	
	μg/l	< 1	
4-2:2016			
limite di quantificazione: 1		incertezza:	
M 2:2016	μg/l	3,1	
4-2.2010			
limite di quantificazione: 1		incertezza: ± 0,3	
	ua/l	4.4	3000
4-2:2016	F9/-	-,-	
limite di quantificazione: 1		incertezza: ± 0,4	
	μg/l	< 0,1	1
0:2005		· I	I
limite di quantificazione: 0.1		incertezza:	
		moortozza.	
	μg/l	< 0,1	50
0:2005		•	•
limite di quantificazione: 0,1		incertezza:	
-		ı	T
	μg/l	< 0,1	25
0:2005			
limite di quantificazione: 0,1		incertezza:	
	ua/l	< 0.1	15
0:2005	μ9/1	< 0,1	10
limite di quantificazione: 0,1		incertezza:	
	μg/l	< 0.1	10
0:2005		٠,,,	
F 1 F 15 1 0.4			
limite di quantificazione: 0,1		incertezza:	
	μg/l	< 0,01	0,1
		!	!
limite di quantificazione: 0.01		incertezza:	
,			
	μg/l	< 0,001	0,01
limite di quantificazione: 0,001		incertezza:	
		1	
	μg/l	< 0,01	0,1
limite di quantificazione: 0,01	·	incertezza:	·
	limite di quantificazione: 1 4-2:2016 limite di quantificazione: 1 2:2005 limite di quantificazione: 0,1 2:2005 limite di quantificazione: 0,1	4-2:2016 limite di quantificazione: 1 pg/l 4-2:2016 limite di quantificazione: 1 pg/l 2:2005 limite di quantificazione: 0,1 pg/l 1:2005 limite di quantificazione: 0,1 pg/l limite di quantificazione: 0,1 pg/l limite di quantificazione: 0,1 pg/l limite di quantificazione: 0,01	### dignatificazione: 1 incertezza: ### ### ### ### ### #### #### #### #

Ordine dei CHIMICI e dei FISICI della Prov. di Treviso n° A093 Codice Fiscale GSTDRN42R12H823B P.IVA 01627660267 Via Pirzio Biroli n.1 - 31046 ODERZO (TV)

Triggiano, 15 dicembre 2020

Certificato n° 20Cl00449

CERTIFICATO ANALISI

Benzo(k)fluorantene	μg/l	< 0,005	0,05
Metodo di analisi di riferimento: EPA 8270E			
limite di quantificazione: 0,005		incertezza:	
enzo(g,h,i)perilene	µg/l	< 0,001	0,01
Metodo di analisi di riferimento: EPA 8270E	р9/1	40,001	0,01
limite di quantificazione: 0,001		incertezza:	
risene	µg/l	< 0,01	5
Metodo di analisi di riferimento: EPA 8270E		· I	
limite di quantificazione: 0,01		incertezza:	
bibenzo(a,h)antracene	µg/l	< 0,001	0,01
Metodo di analisi di riferimento: EPA 8270E	` -	,	
limite di quantificazione: 0,001		incertezza:	
ndeno(1,2,3-c,d)pirene	μg/l	< 0,01	0,1
Metodo di analisi di riferimento: EPA 8270E		10,01	
limite di quantificazione: 0,01		incertezza:	
irene	μg/l	< 0,01	50
Metodo di analisi di riferimento: EPA 8270E		·	·
limite di quantificazione: 0,01		incertezza:	
commatoria IPA (punto 38, tabella 2, allegato 5, titolo V d. Lgs 152/2006)	μg/l	< 0,01	0,1
Metodo di analisi di riferimento: EPA 8270E		·	
limite di quantificazione: 0,01		incertezza:	
Clorometano	μg/l	< 0,1	1,5
Metodo di analisi di riferimento: UNI EN ISO 15680:2005	` -		
limite di quantificazione: 0,1		incertezza:	
loroformio (triclorometano)	μg/l	0,020	0,15
Metodo di analisi di riferimento: UNI EN ISO 15680:2005	ру/1	0,020	0,13
limite di quantificazione: 0,01		incertezza: ± 0,003	
Eloruro di vinile Metodo di analisi di riferimento: UNI EN ISO 15680:2005	μg/l	< 0,05	0,5
limite di quantificazione: 0,05		incertezza:	
,2 - Dicloroetano	μg/l	< 0,1	3
Metodo di analisi di riferimento: UNI EN ISO 15680:2005			
limite di quantificazione: 0,1		incertezza:	

Ordine dei CHIMICI e dei FISICI della Prov. di Treviso n° A093 Codice Fiscale GSTDRN42R12H823B P.IVA 01627660267 Via Pirzio Biroli n.1 - 31046 ODERZO (TV)

Triggiano, 15 dicembre 2020

Certificato n° 20Cl00449

CERTIFICATO ANALISI

,1 - Dicloroetilene	μg/I	0,190	0,05
Metodo di analisi di riferimento: UNI EN ISO 15680:2005			•
limite di quantificazione: 0,005		incertezza: ± 0,029	
			T
ricloroetilene	μg/l	< 0,1	1,5
Metodo di analisi di riferimento: UNI EN ISO 15680:2005			
limite di quantificazione: 0,1		incertezza:	
	_		1
etracloroetilene Metodo di analisi di riferimento: UNI EN ISO 15680:2005	μg/l	< 0,1	1,1
Weldub di analisi di menineno. Oni EN 130 13000.2003			
limite di quantificazione: 0,1		incertezza:	
saclorobutadiene (HCBD)	μg/l	< 0,01	0,15
Metodo di analisi di riferimento: UNI EN ISO 15680:2005		7 0,01	0,10
limite di quantificazione: 0,01		incertezza:	
ommatoria organoalogenati (punto 47, tabella 2, allegato 5, titolo V d. Lgs		- 4	
52/2006)	μg/l	< 1	10
Metodo di analisi di riferimento: UNI EN ISO 15680:2005			
limite di quantificazione: 1		incertezza:	
		1	ı
,1 - Dicloroetano	μg/l	< 0,1	810
Metodo di analisi di riferimento: UNI EN ISO 15680:2005			
limite di quantificazione: 0,1		incertezza:	
2 Dielegestilens		404	1 00
,2 - Dicloroetilene Metodo di analisi di riferimento: UNI EN ISO 15680:2005	μg/l	< 0,1	60
Microso di diffulla di Inclinici dei. Graf Ela 100 10000.2000			
limite di quantificazione: 0,1		incertezza:	
2 - Dicloropropano	μg/l	< 0,01	0,15
Metodo di analisi di riferimento: UNI EN ISO 15680:2005		7 0,01	0,10
limite di quantificazione: 0,01		incertezza:	
1,2 - Tricloroetano	μg/l	< 0,01	0,2
Metodo di analisi di riferimento: UNI EN ISO 15680:2005		**	1
limite di guartificazione, 0.04		incorto	
limite di quantificazione: 0,01		incertezza:	
,2,3 - Tricloropropano	μg/l	< 0,001	0,001
Metodo di analisi di riferimento: UNI EN ISO 15680:2005			!
limite di quantificazione: 0,001		incertezza:	
and a quantification of the			
,1,2,2 - Tetracloroetano	μg/l	< 0,005	0,05
Metodo di analisi di riferimento: UNI EN ISO 15680:2005		•	•

Ordine dei CHIMICI e dei FISICI della Prov. di Treviso n° A093 Codice Fiscale GSTDRN42R12H823B P.IVA 01627660267 Via Pirzio Biroli n.1 - 31046 ODERZO (TV)

Triggiano, 15 dicembre 2020

Certificato n° 20Cl00449

CERTIFICATO ANALISI

Tribromomotono		< 0.04	
Fribromometano Metodo di analisi di riferimento: UNI EN ISO 15680:2005	µg/I	< 0,01	0,3
limite di quantificazione: 0,01		incertezza:	
1,2 - Dibromoetano	μg/l	< 0,001	0,001
Metodo di analisi di riferimento: UNI EN ISO 15680:2005		5,555	
limite di quantificazione: 0,001		incertezza:	
ilmite di quantificazione. 0,001		incertezza.	
Dibromoclorometano	μg/l	< 0,01	0,13
Metodo di analisi di riferimento: UNI EN ISO 15680:2005			
limite di quantificazione: 0,01		incertezza:	
		ı	
Bromodiclorometano	μg/l	< 0,01	0,17
Metodo di analisi di riferimento: UNI EN ISO 15680:2005			
limite di quantificazione: 0,01		incertezza:	
Nitrobenzene		< 0.2	2.5
Metodo di analisi di riferimento: EPA 8260 rev 3 2006	µg/I	< 0,3	3,5
limite di quantificazione: 0,3		incertezza:	
,2 - Dinitrobenzene	μg/l	< 0,3	15
Metodo di analisi di riferimento: EPA 8260 rev 3 2006		· I	I
limite di quantificazione: 0,3		incertezza:	
,3- dinitrobenzene	μg/l	< 0,3	3,7
Metodo di analisi di riferimento: EPA 8260 rev 3 2006			
limite di quantificazione: 0,3		incertezza:	
Cloronitrobenzeni (ognumo)	 μg/l	< 0,05	0,5
Metodo di analisi di riferimento: EPA 8260 rev 3 2006	μ9/1	< 0,03	0,3
limite di quantificazione: 0,05		incertezza:	
Monoclorobenzene	μg/l	< 0,1	40
Metodo di analisi di riferimento: UNI EN ISO 15680:2005			
limite di quantificazione: 0,1		incertezza:	
2 dialarahanyana	="	< 0.4	070
,2 - diclorobenzene Metodo di analisi di riferimento: UNI EN ISO 15680:2005	µg/I	< 0,1	270
limite di quantificazione: 0,1		incertezza:	
,4 - diclorobenzene	μg/l	< 0,05	0,5
Metodo di analisi di riferimento: UNI EN ISO 15680:2005	10	-,-•	
limite di quantificazione: 0,05		incertezza:	

Ordine dei CHIMICI e dei FISICI della Prov. di Treviso n° A093 Codice Fiscale GSTDRN42R12H823B P.IVA 01627660267 Via Pirzio Biroli n.1 - 31046 ODERZO (TV)

Triggiano, 15 dicembre 2020

Certificato n° 20Cl00449

CERTIFICATO ANALISI

,2,4 - Triclorobenzene		μg/l	< 0,1	190
Metodo di analisi di riferimento: UNI EN ISO 1568	0:2005		•	•
	limite di quantificazione: 0,1		incertezza:	
2.4.5. Tetroplerebenson			- 0.4	1.0
,2,4,5 - Tetraclorobenzene Metodo di analisi di riferimento: EPA 8270E		μg/l	< 0,1	1,8
	limite di quantificazione: 0,1		incertezza:	
Pentaclorobenzene		μg/l	< 0,5	5
Metodo di analisi di riferimento: EPA 8270E			•	·
	limite di quantificazione: 0,5		incertezza:	
saclorobenzene (HCB)		μg/l	< 0,001	0,01
Metodo di analisi di riferimento: EPA 8270E			<u>'</u>	
	limite di quantificazione: 0,001		incertezza:	
alavafanala			- 4	100
2 - clorofenolo Metodo di analisi di riferimento: EPA 8270E		μg/l	<1	180
	limite di quantificazione: 1		incertezza:	
,4 - Diclorofenolo		μg/l	< 1	110
Metodo di analisi di riferimento: EPA 8270E			•	
	limite di quantificazione: 1		incertezza:	
2,4,6 - Triclorofenolo		μg/l	< 0,5	5
Metodo di analisi di riferimento: EPA 8270E			'	!
	limite di quantificazione: 0,5		incertezza:	
			1005	1 0.5
Pentaclorofenolo Metodo di analisi di riferimento: EPA 8270E		μg/l	< 0,05	0,5
	limite di quantificazione: 0,05		incertezza:	
Maclor		μg/l	< 0,01	0,1
Metodo di analisi di riferimento: EPA 8270E			·	
	limite di quantificazione: 0,01		incertezza:	
ldrin		μg/l	< 0,003	0,03
Metodo di analisi di riferimento: EPA 8270E			•	'
	limite di quantificazione: 0,003		incertezza:	
Atrazina		μg/l	< 0,01	0,3
Metodo di analisi di riferimento: EPA 8270E		ייפיי	- 0,01	3,0
	limite di quantificazione: 0,01		incertezza:	
	The ai qualitinouzione. 0,01		moontozza.	

Ordine dei CHIMICI e dei FISICI della Prov. di Treviso n° A093 Codice Fiscale GSTDRN42R12H823B P.IVA 01627660267 Via Pirzio Biroli n.1 - 31046 ODERZO (TV)

Triggiano, 15 dicembre 2020

Certificato n° 20Cl00449

CERTIFICATO ANALISI

			T
Alfa-esacioroesano	μg/l	< 0,01	0,1
Metodo di analisi di riferimento: EPA 8270E			
limite di quantificazione: 0,01		incertezza:	
Beta-esacloroesano		1004	0.4
Metodo di analisi di riferimento: EPA 8270E	μg/l	< 0,01	0,1
, , , , , , , , , , , , , , , , , , ,			
limite di quantificazione: 0,01		incertezza:	
Gamma-esacloroesano (lindano)	μg/l	< 0,01	0,1
Metodo di analisi di riferimento: EPA 8270E		,	
limite di quantificazione: 0,01		incertezza:	
Clordano	ug/l	< 0,01	0,1
Metodo di analisi di riferimento: EPA 8270E	μg/l	~ 0,0 I	0,1
limite di quantificazione: 0,01		incertezza:	
DDD, DDT, DDE	μg/l	< 0,01	0,1
Metodo di analisi di riferimento: EPA 8270E			
limite di quantificazione: 0,01		incertezza:	
Dieldrin	μg/l	< 0,003	0,03
Metodo di analisi di riferimento: EPA 8270E			
limite di quantificazione: 0,003		incertezza:	
Endrin	μg/l	< 0,01	0,1
Metodo di analisi di riferimento: EPA 8270E	P9,.	30,01	<u> </u>
limite di quantificazione: 0,01		incertezza:	
Sommatoria fitofarmaci (punto 86, tabella 2, allegato 5, titolo V d. Lgs	μg/l	< 0,05	0,5
152/2006) Metodo di analisi di riferimento: EPA 8270E		,	
limite di quantificazione: 0,05		incertezza:	
Clorpirifos	μg/l	< 0,1	
Metodo di analisi di riferimento: EPA 8270E			
limite di quantificazione: 0,1		incertezza:	
Dimetoato FDA 00325	μg/l	< 0,1	
Metodo di analisi di riferimento: EPA 8270E			
limite di quantificazione: 0,1		incertezza:	
Deltametrina	μg/l	< 0,1	
Metodo di analisi di riferimento: EPA 8270E	µу/і	~ 0, 1	
limite di quantificazione: 0,1		incertezza:	

Ordine dei CHIMICI e dei FISICI della Prov. di Treviso n° A093 Codice Fiscale GSTDRN42R12H823B P.IVA 01627660267 Via Pirzio Biroli n.1 - 31046 ODERZO (TV)

Triggiano, 15 dicembre 2020

Certificato n° 20CI00449

CERTIFICATO ANALISI

(valido a tutti gli effetti come da D. L. n° 842/28)

Fention		μg/l	< 0,1	
Metodo di analisi di riferimento: EPA 8270E			*	I
	limite di quantificazione: 0,1		incertezza:	
Oxifluorfen		μg/l	< 0,1	
Metodo di analisi di riferimento: EPA 8270E			<u>'</u>	
	limite di quantificazione: 0,1		incertezza:	
Paration		μg/l	< 0,1	
Metodo di analisi di riferimento: EPA 8270E			·	·
	limite di quantificazione: 0,1		incertezza:	
Simazina		μg/l	< 0,1	
Metodo di analisi di riferimento: EPA 8270E				•
	limite di quantificazione: 0,1		incertezza:	
Sommatoria pesticidi fosforati		μg/l	< 0,1	
Metodo di analisi di riferimento: EPA 8270E				
	limite di quantificazione: 0,1		incertezza:	
PCB		μg/l	< 0,001	0,01
Metodo di analisi di riferimento: APAT CNR IRSA	5110 Man 29 2003			
	limite di quantificazione: 0,001		incertezza:	

Note:

La determinazione dei metalli è stata effettuata sul campione filtrato e acidificato. Nel calcolo della concentrazione degli elementi in traccia non viene considerato il recupero determinato dal laboratorio il quale risulta essere compreso tra 90 e 110 %.

L'incertezza di misura riportata nel presente certificato di analisi è espressa come incertezza estesa con un fattore di copertura (k) pari a 2 corrispondente a un livello di fiducia di circa 95%.

I risultati delle analisi si riferiscono ESCLUSIVAMENTE al campione esaminato; si declina ogni responsabilità nei casi di utilizzo del presente atto in difformità agli usi consentiti dalla Legge. Le analisi da eseguire sono state commissionate dal committente e dunque si declina ogni responsabilità in merito alla completezza delle informazioni.

Le analisi sono state eseguite dalla Lifeanalytics S.r.l., accreditato al n. 0128L

Le analisi sono state commissionate ai laboratori del Gruppo LIFEANALYTICS

Lifeanalytics S.r.l.

www.lifeanalytics.it

servizioclienti@lifeanalytics.it

Laboratori Conformi alla norma UNI CEI EN ISO/IEC 17025:2018 Laboratori Certificati UNI EN ISO 9001:2015 e UNI EN ISO 14001:2015

R5
Report di monitoraggio trimestrale
TAF (Settembre-Novembre'20)
secondo progetto di MISO
approvato con D.D. n.39 del

Pagina **57** di **57**

Allegato 5- Rapporti di prova ARPA Puglia

22/02/2019

Redatto da: TECNOLOGIA AMBIENTE

Via G.M. Galanti, 16, 72100 Brindisi Tel. 0831 099501 Fax. 0831 099599 E-mail: dap.br@arpa.puglia.it

PEC dap.br.arpapuglia@pec.rupar.puglia.it

MD 182 - Rev. 5 del 18.10.2016

Pagina 1 di 2

Rapporto di Prova n. 20564-2020 REV. 0

Categoria Merceologica:

ACQUE SOTTERRANEE

Materiale da saggio:

ACQUA DI FALDA PER MONITORAGGIO

Procedura di campionamento: CAMPIONAMENTO A CURA DEL PRELEVATORE

Cliente:

REGIONE PUGLIA - Lungomare N. Sauro 33 - Bari

Presentato:

da SERVIZI TERRITORIALI ARPA PUGLIA DAP BRINDISI con verbale 880

Consegna in data:

26/11/2020

Temperatura d'arrivo rilevata: 8°C

Data Prelievo:

26/11/2020

Prelevato c/o:

Brindisi - Formica Ambiente S.r.I. "Pozzo PE1".

Sigillo:

Integro

Conservazione:

Frigorifero

ANALISI CHIMICHE

Prova	Metodo	Risultato	Incertezza	UM	Limiti	Data inizio Data fine
1,1-Dicloroetilene	UNI EN ISO 15680:2005	0,160	± 0,070	μg/L	≤ 0,05 (1)	27/11/2020 02/12/2020
1,2-Dicloropropano	UNI EN ISO 15680:2005	<0,08		μg/L	≤ 0,15 (1)	27/11/2020 02/12/2020

Non conforme per il tenore in 1,1-dicloroetilene che risulta essere presente in quantità superiore alla Concentrazione Soglia di Contaminazione stabilita dal D.Lgs 152/06 e s.m.i. All.5, parte IV, Tab.2.

Il Dirigente Responsabile Dott. Vincenzo Musolino

La firma è sostituita dal nominativo a stampa del soggetto responsabile, ai sensi dell'art. 3 del D.Lqs 39/1993

(1) D.lgs 152/06 Tab.2 All.5 Parte IV

Note:

- I risultati contenuti nel presente rapporto di prova si riferiscono esclusivamente al campione/i o alla aliquota campionaria sottoposta a prova cosi come ricevuti. E' vietata la riproduzione del presente rapporto di prova o del suo contenuto, sia in toto sia in parte, se non per gli usi consentiti dalla Legge o con approvazione scritta da parte di questo Laboratorio.
- Il laboratorio, per campioni inerenti i controlli ufficiale sugli alimenti, conserva i campioni analizzati per i tempi previsti nella carta dei servizi, compatibilmente con la loro deteriorabilità, al fine di soddisfare eventuali richieste analitiche aggiuntive del cliente stesso.
- Per le prove accreditate che riguardano determinazioni di residui/tracce, quando la procedura di pretrattamento (es. concentrazione/purificazione/estrazione) può influenzare il recupero, questo è valutato ad ogni sessione analitica ed è riportato nel presente RdP in calce ai parametri interessati o nel giudizio, specificando se sia stato utilizzato nel calcolo dei risultati.
- Per le prove chimiche, l'incertezza indicata è espressa come incertezza estesa (U) con un fattore di copertura K=2 per un livello di fiducia pari al 95%.

ARPA PUGLIA RETE LABORATORI

Arpa Puglia Dipartimento di Brindisi

Via G.M. Galanti, 16, 72100 Brindisi Tel. 0831 099501 Fax. 0831 099599 E-mail: dap.br@arpa.puglia.it

PEC dap.br.arpapuglia@pec.rupar.puglia.it

MD 182 - Rev. 5 del 18.10.2016

Pagina 2 di 2

Rapporto di Prova n. 20564-2020 REV. 0

Fine Rapporto di prova Brindisi, 07/12/2020 12:53:32

Via G.M. Galanti, 16, 72100 Brindisi Tel. 0831 099501 Fax. 0831 099599 E-mail: dap.br@arpa.puglia.it

PEC dap.br.arpapuglia@pec.rupar.puglia.it

MD 182 - Rev. 5 del 18.10.2016

Pagina 1 di 2

Rapporto di Prova n. 20565-2020 REV. 0

Categoria Merceologica:

ACQUE SOTTERRANEE

Materiale da saggio:

ACQUA DI FALDA PER MONITORAGGIO

Procedura di campionamento: CAMPIONAMENTO A CURA DEL PRELEVATORE

Cliente:

REGIONE PUGLIA - Lungomare N. Sauro 33 - Bari

Presentato:

da SERVIZI TERRITORIALI ARPA PUGLIA DAP BRINDISI con verbale 881

Consegna in data:

26/11/2020

Temperatura d'arrivo rilevata: 8°C

Data Prelievo:

26/11/2020

Prelevato c/o:

Brindisi - Formica Ambiente S.r.I. "Pozzo PE2".

Sigillo:

Integro

Conservazione:

Frigorifero

ANALISI CHIMICHE

Prova	Metodo	Risultato	Incertezza	UM	Limiti	Data inizio Data fine
1,1-Dicloroetilene	UNI EN ISO 15680:2005	1,830	± 0,805	μg/L	≤ 0,05 (1)	27/11/2020 02/12/2020
1,2-Dicloropropano	UNI EN ISO 15680:2005	0,14	± 0,06	μg/L	≤ 0,15 (1)	27/11/2020 02/12/2020

Non conforme per il tenore in 1,1-dicloroetilene che risulta essere presente in quantità superiore alla Concentrazione Soglia di Contaminazione stabilita dal D.Lgs 152/06 e s.m.i. All.5, parte IV, Tab.2.

Il Dirigente Responsabile Dott. Vincenzo Musolino

La firma è sostituita dal nominativo a stampa del soggetto responsabile, ai sensi dell'art. 3 del D.Lqs 39/1993 (1) D.lgs 152/06 Tab.2 All.5 Parte IV

Note:

- I risultati contenuti nel presente rapporto di prova si riferiscono esclusivamente al campione/i o alla aliquota campionaria sottoposta a prova così come ricevuti. E' vietata la riproduzione del presente rapporto di prova o del suo contenuto, sia in toto sia in parte, se non per gli usi consentiti dalla Legge o con approvazione scritta da parte di questo Laboratorio.
- Il laboratorio, per campioni inerenti i controlli ufficiale sugli alimenti, conserva i campioni analizzati per i tempi previsti nella carta dei servizi, compatibilmente con la loro deteriorabilità, al fine di soddisfare eventuali richieste analitiche aggiuntive del cliente stesso.
- Per le prove accreditate che riguardano determinazioni di residui/tracce, quando la procedura di pretrattamento (es. concentrazione/purificazione/estrazione) può influenzare il recupero, questo è valutato ad ogni sessione analitica ed è riportato nel presente RdP in calce ai parametri interessati o nel giudizio, specificando se sia stato utilizzato nel calcolo dei risultati.
- Per le prove chimiche, l'incertezza indicata è espressa come incertezza estesa (U) con un fattore di copertura K=2 per un livello di fiducia pari al 95%.

ARPA PUGLIA RETE LABORATORI

Arpa Puglia Dipartimento di Brindisi

Via G.M. Galanti, 16, 72100 Brindisi Tel. 0831 099501 Fax. 0831 099599 E-mail: dap.br@arpa.puglia.it

PEC dap.br.arpapuglia@pec.rupar.puglia.it

MD 182 - Rev. 5 del 18.10.2016

Pagina 2 di 2

Rapporto di Prova n. 20565-2020 REV. 0

Fine Rapporto di prova Brindisi, 07/12/2020 12:52:28

Via G.M. Galanti, 16, 72100 Brindisi Tel. 0831 099501 Fax. 0831 099599 E-mail: dap.br@arpa.puglia.it

MD 182 - Rev. 5 del 18.10.2016

PEC dap.br.arpapuglia@pec.rupar.puglia.it

Pagina 1 di 1

Rapporto di Prova n. 20547-2020 REV. 0

Categoria Merceologica:

ACQUE SOTTERRANEE

Materiale da saggio:

ACQUA DI FALDA PER MONITORAGGIO

Procedura di campionamento: CAMPIONAMENTO A CURA DEL PRELEVATORE

Cliente:

REGIONE PUGLIA - Lungomare N. Sauro 33 - Bari

Presentato:

da SERVIZI TERRITORIALI ARPA PUGLIA DAP BRINDISI con verbale 879

Consegna in data:

26/11/2020

Temperatura d'arrivo rilevata: 8°C

Data Prelievo:

25/11/2020

Prelevato c/o:

Brindisi - Formica Ambiente S.r.l. - Pozzo "PR1"

Sigillo:

Integro

Conservazione:

Frigorifero

ANALISI CHIMICHE

Prova	Metodo	Risultato	Incertezza	UM	Limiti	Data inizio Data fine
1,1-Dicloroetilene	UNI EN ISO 15680:2005	<0,01		µg/L	≤ 0,05 (1)	27/11/2020 02/12/2020
1,2-Dicloropropano	UNI EN ISO 15680:2005	<0,08		μg/L	≤ 0,15 (1)	27/11/2020 02/12/2020

Conforme, per i parametri esaminati, alle Concentrazioni Soglia di Contaminazione stabilite dal D.Lgs 152/06 e s.m.i. All.5, parte IV, Tab.2.

Il Dirigente Responsabile Dott. Vincenzo Musolino

La firma è sostituita dal nominativo a stampa del soggetto responsabile, ai sensi dell'art. 3 del D.Lgs 39/1993

(1) D.lgs 152/06 Tab.2 All.5 Parte IV

Note:

- I risultati contenuti nel presente rapporto di prova si riferiscono esclusivamente al campione/i o alla aliquota campionaria sottoposta a prova così come ricevuti. E' vietata la riproduzione del presente rapporto di prova o del suo contenuto, sia in toto sia in parte, se non per gli usi consentiti dalla Legge o con approvazione scritta da parte di questo Laboratorio.
- Il laboratorio, per campioni inerenti i controlli ufficiale sugli alimenti, conserva i campioni analizzati per i tempi previsti nella carta dei servizi, compatibilmente con la loro deteriorabilità, al fine di soddisfare eventuali richieste analitiche aggiuntive del cliente stesso.

Fine Rapporto di prova Brindisi, 07/12/2020 12:54:56

Via G.M. Galanti, 16, 72100 Brindisi Tel. 0831 099501 Fax. 0831 099599 E-mail: dap.br@arpa.puglia.it

PEC dap.br.arpapuglia@pec.rupar.puglia.it

MD 182 - Rev. 5 del 18.10.2016

Pagina 1 di 1

Rapporto di Prova n. 20412-2020 REV. 0

Categoria Merceologica:

ACQUE SOTTERRANEE

Materiale da saggio:

ACQUA DI FALDA PER MONITORAGGIO

Procedura di campionamento: CAMPIONAMENTO A CURA DEL PRELEVATORE

Cliente:

REGIONE PUGLIA - Lungomare N. Sauro 33 - Bari

Presentato:

da SERVIZI TERRITORIALI ARPA PUGLIA DAP BRINDISI con verbale 875

Consegna in data:

24/11/2020

Temperatura d'arrivo rilevata: 8 °C

Data Prelievo:

24/11/2020

Prelevato c/o:

Brindisi - Formica Ambiente s.r.l. - Pozzo "PR2"

Sigillo:

Integro

Conservazione:

Frigorifero

ANALISI CHIMICHE

Prova	Metodo	Risultato	Incertezza	UM	Limiti	Data inizio Data fine
1,1-Dicloroetilene	UNI EN ISO 15680:2005	<0,01		μg/L	≤ 0,05 (1)	26/11/2020 05/12/2020
1,2-Dicloropropano	UNI EN ISO 15680:2005	<0,08		μg/L	≤ 0,15 (1)	26/11/2020 05/12/2020

Conforme, per i parametri esaminati, alle Concentrazioni Soglia di Contaminazione stabilite dal D.Lgs 152/06 e s.m.i. All.5, parte IV, Tab.2.

Il Dirigente Responsabile Dott. Vincenzo Musolino

La firma è sostituita dal nominativo a stampa del soggetto responsabile, ai sensi dell'art. 3 del D.Lgs 39/1993

(1) D.lgs 152/06 Tab.2 All.5 Parte IV

Note:

- I risultati contenuti nel presente rapporto di prova si riferiscono esclusivamente al campione/i o alla aliquota campionaria sottoposta a prova così come ricevuti. E' vietata la riproduzione del presente rapporto di prova o del suo contenuto, sia in toto sia in parte, se non per gli usi consentiti dalla Legge o con approvazione scritta da parte di questo Laboratorio.
- Il laboratorio, per campioni inerenti i controlli ufficiale sugli alimenti, conserva i campioni analizzati per i tempi previsti nella carta dei servizi, compatibilmente con la loro deteriorabilità, al fine di soddisfare eventuali richieste analitiche aggiuntive del cliente stesso.

Fine Rapporto di prova Brindisi, 15/12/2020 18:43:01

Via G.M. Galanti, 16, 72100 Brindisi Tel. 0831 099501 Fax. 0831 099599 E-mail: dap.br@arpa.puglia.it

MD 182 - Rev. 5

del 18.10.2016

PEC dap.br.arpapuglia@pec.rupar.puglia.it

Pagina 1 di 1

Rapporto di Prova n. 20414-2020 REV. 0

Categoria Merceologica:

ACQUE SOTTERRANEE

Materiale da saggio:

ACQUA DI FALDA PER MONITORAGGIO

Procedura di campionamento: CAMPIONAMENTO A CURA DEL PRELEVATORE

Cliente:

REGIONE PUGLIA - Lungomare N. Sauro 33 - Bari

Presentato:

da SERVIZI TERRITORIALI ARPA PUGLIA DAP BRINDISI con verbale 874

Dettagli:

Uscita imp. TAF

Consegna in data:

24/11/2020

Temperatura d'arrivo rilevata: 8°C

Data Prelievo:

24/11/2020

Prelevato c/o:

Brindisi - Formica Ambiente S.r.l. - Scarico Impianto TAF

Conservazione:

Frigorifero

ANALISI CHIMICHE

Prova	Metodo	Risultato	Incertezza	UM	Limiti	Data inizio Data fine
1,1-Dicloroetilene	UNI EN ISO 15680:2005	<0,01		μg/L	≤ 0,05 (1)	26/11/2020 05/12/2020
1,2-Dicloropropano	UNI EN ISO 15680:2005	<0,08	gs.	μg/L	≤ 0,15 (1)	26/11/2020 05/12/2020

Conforme, per i parametri esaminati, alle Concentrazioni Soglia di Contaminazione stabilite dal D.Lgs 152/06 e s.m.i. All.5, parte IV, Tab.2.

Il Dirigente Responsabile Dott. Vincenzo Musolino

La firma è sostituita dal nominativo a stampa del soggetto responsabile, ai sensi dell'art. 3 del D.Lgs 39/1993

(1) D.lgs 152/06 Tab.2 All.5 Parte IV

- I risultati contenuti nel presente rapporto di prova si riferiscono esclusivamente al campione/i o alla aliquota campionaria sottoposta a prova così come ricevuti. E' vietata la riproduzione del presente rapporto di prova o del suo contenuto, sia in toto sia in parte, se non per gli usi consentiti dalla Legge o con approvazione scritta da parte di questo Laboratorio.
- Il laboratorio, per campioni inerenti i controlli ufficiale sugli alimenti, conserva i campioni analizzati per i tempi previsti nella carta dei servizi, compatibilmente con la loro deteriorabilità, al fine di soddisfare eventuali richieste analitiche aggiuntive del cliente stesso.

Fine Rapporto di prova Brindisi, 15/12/2020 18:44:14

Via G.M. Galanti, 16, 72100 Brindisi Tel. 0831 099501 Fax. 0831 099599 E-mail: dap.br@arpa.puglia.it

PEC dap.br.arpapuglia@pec.rupar.puglia.it

MD 182 - Rev. 5 del 18.10.2016

Pagina 1 di 1

Rapporto di Prova n. 20546-2020 REV. 0

Categoria Merceologica:

ACQUE SOTTERRANEE

Materiale da saggio:

ACQUA DI FALDA PER MONITORAGGIO

Procedura di campionamento: CAMPIONAMENTO A CURA DEL PRELEVATORE

Cliente: Presentato: REGIONE PUGLIA - Lungomare N. Sauro 33 - Bari

Consegna in data:

da SERVIZI TERRITORIALI ARPA PUGLIA DAP BRINDISI con verbale 877

26/11/2020

Temperatura d'arrivo rilevata: 8 °C

Data Prelievo:

25/11/2020

Prelevato c/o:

Brindisi - C.da Formica: area CAVED srl - Pozzo V1

Sigillo:

Integro

Conservazione:

Frigorifero

ANALISI CHIMICHE

Prova	Metodo	Risultato	Incertezza	UM	Limiti	Data inizio Data fine
1,1-Dicloroetilene	UNI EN ISO 15680:2005	<0,01		µg/L	≤ 0,05 (1)	27/11/2020 02/12/2020
1,2-Dicloropropano	UNI EN ISO 15680:2005	<0,08		µg/L	≤ 0,15 (1)	27/11/2020 02/12/2020

Conforme, per i parametri esaminati, alle Concentrazioni Soglia di Contaminazione stabilite dal D.Lgs 152/06 e s.m.i. All.5, parte IV, Tab.2.

Il Dirigente Responsabile Dott. Vincenzo Musolino

La firma è sostituita dal nominativo a stampa del soggetto responsabile, ai sensi dell'art. 3 del D.Lgs 39/1993 (1) D.lgs 152/06 Tab.2 All.5 Parte IV

Note:

- I risultati contenuti nel presente rapporto di prova si riferiscono esclusivamente al campione/i o alla aliquota campionaria sottoposta a prova così come ricevuti. E' vietata la riproduzione del presente rapporto di prova o del suo contenuto, sia in toto sia in parte, se non per gli usi consentiti dalla Legge o con approvazione scritta da parte di questo
- Il laboratorio, per campioni inerenti i controlli ufficiale sugli alimenti, conserva i campioni analizzati per i tempi previsti nella carta dei servizi, compatibilmente con la loro deteriorabilità, al fine di soddisfare eventuali richieste analitiche aggiuntive del cliente stesso.

Fine Rapporto di prova Brindisi, 07/12/2020 12:56:02

Via G.M. Galanti, 16, 72100 Brindisi Tel. 0831 099501 Fax. 0831 099599 E-mail: dap.br@arpa.puglia.it

PEC dap.br.arpapuglia@pec.rupar.puglia.it

MD 182 - Rev. 5 del 18.10.2016

Pagina 1 di 1

Rapporto di Prova n. 20545-2020 REV. 0

Categoria Merceologica:

ACQUE SOTTERRANEE

Materiale da saggio:

ACQUA DI FALDA PER MONITORAGGIO

Procedura di campionamento: CAMPIONAMENTO A CURA DEL PRELEVATORE

Cliente: Presentato: REGIONE PUGLIA - Lungomare N. Sauro 33 - Bari

da SERVIZI TERRITORIALI ARPA PUGLIA DAP BRINDISI con verbale 876

Consegna in data:

26/11/2020

Temperatura d'arrivo rilevata: 8 °C

Data Prelievo:

25/11/2020

Prelevato c/o:

Brindisi - C.da Formica: area CAVED srl - Pozzo V2

Sigillo:

Integro

Conservazione:

Frigorifero

ANALISI CHIMICHE

Prova	Metodo	Risultato	Incertezza	им	Limiti	Data inizio Data fine
1,1-Dicloroetilene	UNI EN ISO 15680:2005	<0,01		μg/L	≤ 0,05 (1)	27/11/2020 02/12/2020
1,2-Dicloropropano	UNI EN ISO 15680:2005	<0,08		μg/L	≤ 0,15 (1)	27/11/2020 02/12/2020

Conforme, per i parametri esaminati, alle Concentrazioni Soglia di Contaminazione stabilite dal D.Lgs 152/06 e s.m.i. All.5, parte IV, Tab.2.

Il Dirigente Responsabile Dott. Vincenzo Musolino

La firma è sostituita dal nominativo a stampa del soggetto responsabile, ai sensi dell'art. 3 del D.Lgs 39/1993

(1) D.lgs 152/06 Tab.2 All.5 Parte IV

Note:

- I risultati contenuti nel presente rapporto di prova si riferiscono esclusivamente al campione/i o alla aliquota campionaria sottoposta a prova così come ricevuti. E' vietata la riproduzione del presente rapporto di prova o del suo contenuto, sia in toto sia in parte, se non per gli usi consentiti dalla Legge o con approvazione scritta da parte di questo
- Il laboratorio, per campioni inerenti i controlli ufficiale sugli alimenti, conserva i campioni analizzati per i tempi previsti nella carta dei servizi, compatibilmente con la loro deteriorabilità, al fine di soddisfare eventuali richieste analitiche aggiuntive del cliente stesso.

Fine Rapporto di prova Brindisi, 07/12/2020 12:58:16

Via G.M. Galanti, 16, 72100 Brindisi Tel. 0831 099501 Fax. 0831 099599 E-mail: dap.br@arpa.puglia.it

PEC dap.br.arpapuglia@pec.rupar.puglia.it

MD 182 - Rev. 5 del 18.10.2016

Pagina 1 di 8

LAB Nº 1119 L

Rapporto di Prova n. 20334-2020 REV. 0

Categoria Merceologica:

ACQUE SOTTERRANEE

Materiale da saggio:

ACQUA DA POZZO SPIA

Procedura di campionamento: CAMPIONAMENTO A CURA DEL PRELEVATORE

Cliente:

REGIONE PUGLIA - Lungomare N. Sauro 33 - Bari

ANALISI CHIMICHE

Presentato:

da SERVIZI TERRITORIALI ARPA PUGLIA DAP BRINDISI con verbale 870

Consegna in data:

24/11/2020

Temperatura d'arrivo rilevata: 4°C

Data Prelievo:

23/11/2020

Prelevato c/o:

Brindisi - Formica Ambiente S.r.I. -Pozzo N°4.

Sigillo:

Integro

Conservazione:

Frigorifero

Prova	Metodo	Risultato	Incertezza	UM	Limi	ti	Data inizio Data fine	
COMPOSTI ORGANICI AROMATICI	UNI EN ISO 15680:2005							
> Benzene *	UNI EN ISO 15680:2005	<0,2		μg/L	≤ 1	(1)	25/11/2020 30/11/2020	
> Etilbenzene *	UNI EN ISO 15680:2005	<3		μg/L	≤ 50	(1)	25/11/2020 30/11/2020	
> Stirene *	UNI EN ISO 15680:2005	<3		μg/L	≤ 25	(1)	25/11/2020 30/11/2020	
> Toluene *	UNI EN ISO 15680:2005	<1		μg/L	≤ 15	(1)	25/11/2020 30/11/2020	
> m,p-Xilene *	UNI EN ISO 15680:2005	<0,05		μg/L			25/11/2020 30/11/2020	
ALIFATICI CLORURATI CANCEROGENI								
> Triclorometano *	UNI EN ISO 15680:2005	<0,05		μg/L	≤ 0,15	(1)	25/11/2020 30/11/2020	
> Cloruro di vinile *	UNI EN ISO 15680:2005	<0,05		μg/L	≤ 0,5	(1)	25/11/2020 30/11/2020	
> 1,2-Dicloroetano *	UNI EN ISO 15680:2005	<0,7		μg/L	≤ 3	(1)	25/11/2020 30/11/2020	
> 1,1-Dicloroetilene *	UNI EN ISO 15680:2005	0,180	± 0,079	μg/L	≤ 0,05	(1)	25/11/2020 30/11/2020	
> Tricloroetilene *	UNI EN ISO 15680:2005	0,07	± 0,03	μg/L	≤ 1,5	(1)	25/11/2020 30/11/2020	
> Tetracloroetilene *	UNI EN ISO 15680:2005	0,04	± 0,02	μg/L	≤ 1,1	(1)	25/11/2020 30/11/2020	
> Esaclorobutadiene *	UNI EN ISO 15680:2005	0,020	± 0,009	μg/L	≤ 0,15	(1)	25/11/2020 30/11/2020	

Via G.M. Galanti, 16, 72100 Brindisi Tel. 0831 099501 Fax. 0831 099599 E-mail: dap.br@arpa.puglia.it

PEC dap.br.arpapuglia@pec.rupar.puglia.it

MD 182 - Rev. 5 del 18.10.2016

Pagina 2 di 8

LAB Nº 1119 L

Rapporto di Prova n. 20334-2020 REV. 0

Prova	Metodo	Risultato	Incertezza	UM	Limit	l	Data inizio Data fine
> Sommatoria Organo Alogenati	UNI EN ISO 15680:2005	<1		μg/L	≤ 10	(1)	25/11/2020 30/11/2020
ALIFATICI CLORURATI NON CANCEROGENI						i.e	
> 1,1-Dicloroetano *	UNI EN ISO 15680:2005	<0,8		μg/L	≤ 810	(1)	25/11/2020 30/11/2020
> 1,2-Dicloroetilene *	UNI EN ISO 15680:2005	<0,8		μg/L	≤ 60	(1)	25/11/2020 30/11/2020
> 1,2-Dicloropropano *	UNI EN ISO 15680:2005	<0,08		μg/L	≤ 0,15	(1)	25/11/2020 30/11/2020
> 1,1,2-Tricloroetano *	UNI EN ISO 15680:2005	<0,08		μg/L	≤ 0,2	(1)	25/11/2020 30/11/2020
> 1,2,3-Tricloropropano *	UNI EN ISO 15680:2005	<0,001		μg/L	≤ 0,001	(1)	25/11/2020 30/11/2020
> 1,1,2,2-Tetracloroetano *	UNI EN ISO 15680:2005	<0,01	£	μg/L	≤ 0,05	(1)	25/11/2020 30/11/2020
ALIFATICI ALOGENATI CANCEROGENI		*		100			
> Tribromometano *	UNI EN ISO 15680:2005	<0,01		μg/L	≤ 0,3	(1)	25/11/2020 30/11/2020
> 1,2-Dibromoetano *	UNI EN ISO 15680:2005	<0,001		μg/L	≤ 0,001	(1)	25/11/2020 30/11/2020
> Dibromoclorometano *	UNI EN ISO 15680:2005	<0,01		μg/L	≤ 0,13	(1)	25/11/2020 30/11/2020
> Bromodiclorometano *	UNI EN ISO 15680:2005	<0,04		μg/L	≤ 0,17	(1)	25/11/2020 30/11/2020
CLOROBENZENI 1							
> Monoclorobenzene *	UNI EN ISO 15680:2005	<3		μg/L	≤ 40	(1)	25/11/2020 30/11/2020
> 1,2-Diclorobenzene *	UNI EN ISO 15680:2005	<2		μg/L	≤ 270	(1)	25/11/2020 30/11/2020
> 1,4-Diclorobenzene *	UNI EN ISO 15680:2005	<0,1		μg/L	≤ 0,5	(1)	25/11/2020 30/11/2020
> 1,2,4-Triclorobenzene *	UNI EN ISO 15680:2005	<2	ă.	μg/L	≤ 190	(1)	25/11/2020 30/11/2020

Via G.M. Galanti, 16, 72100 Brindisi Tel. 0831 099501 Fax. 0831 099599 E-mail: dap.br@arpa.puglia.it

PEC dap.br.arpapuglia@pec.rupar.puglia.it

MD 182 - Rev. 5 del 18.10.2016

Pagina 3 di 8

LAB Nº 1119 L

Rapporto di Prova n. 20334-2020 REV. 0

Prova	Metodo	Risultato	Incertezza	UM	Limiti		Data inizio Data fine
CLOROBENZENI 2	EPA 3510C 1996 + EPA 8270E 2018						
> Esaclorobenzene *	EPA 3510C 1996 + EPA 8270E 2018	<0,001	*	μg/L	≤ 0,01	(1)	25/11/202 30/11/202
> Pentaclorobenzene *	EPA 3510C 1996 + EPA 8270E 2018	<0,5		μg/L	≤ 5	(1)	25/11/202 30/11/202
> 1,2,4,5-Tetraclorobenzene	EPA 3510C 1996 + EPA 8270E 2018	<0,2		μg/L	≤ 1,8	(1)	25/11/202 30/11/202
POLICICLICI AROMATICI							
> Benzo(a)pirene *	EPA 3510C 1996 + EPA 8270E 2018	<0,002		μg/L	≤ 0,01	(1)	25/11/202 30/11/202
> Benzo(a)antracene *	EPA 3510C 1996 + EPA 8270E 2018	<0,01		μg/L	≤ 0,1	(1)	25/11/202 30/11/202
> Benzo(b)fluorantene *	EPA 3510C 1996 + EPA 8270E 2018	<0,01	ì	μg/L	≤ 0,1	(1)	25/11/202 30/11/202
> Benzo(k)fluorantene *	EPA 3510C 1996 + EPA 8270E 2018	<0,02		μg/L	≤ 0,05	(1)	25/11/202 30/11/202
> Benzo(g,h,i)perilene *	EPA 3510C 1996 + EPA 8270E 2018	<0,001		μg/L	≤ 0,01	(1)	25/11/202 30/11/202
> Dibenzo(a,h)antracene *	EPA 3510C 1996 + EPA 8270E 2018	<0,002		μg/L	≤ 0,01	(1)	25/11/202 30/11/202
> Crisene *	EPA 3510C 1996 + EPA 8270E 2018	<0,05		, μg/L	≤ 5	(1)	25/11/202 30/11/202
> Pirene *	EPA 3510C 1996 + EPA 8270E 2018	<0,05		μg/L	≤ 50	(1)	25/11/202 30/11/202
> Indeno(1,2,3-cd)pirene *	EPA 3510C 1996 + EPA 8270E 2018	<0,02		μg/L	≤ 0,1	(1)	25/11/202 30/11/202
> Sommatoria IPA *	Calcolo	<0,05		μg/L	≤ 0,1	(1)	25/11/202 30/11/202
Test report: Somma delle voci	31, 32, 33, 36 Tab.2 All.5 Parte IV D.Lgs	152/06					
NITROBENZENI							
> Nitrobenzene *	EPA 3510C 1996 + EPA 8270E * 2018	<0,35		μg/L ,	≤ 3,5	(1)	25/11/202 • 30/11/202
> 1,2-Dinitrobenzene *	EPA 3510C 1996 + EPA 8270E 2018	<1		μg/L	≤ 15	(1)	25/11/202 30/11/202
> 1,3-Dinitrobenzene *	EPA 3510C 1996 + EPA 8270E 2018	<0,35		μg/L	≤ 3,7	(1)	25/11/202 30/11/202

Via G.M. Galanti, 16, 72100 Brindisi Tel. 0831 099501 Fax. 0831 099599 E-mail: dap.br@arpa.puglia.it

PEC dap.br.arpapuglia@pec.rupar.puglia.it

MD 182 - Rev. 5 del 18.10.2016

Pagina 4 di 8

LAB Nº 1119 L

Rapporto di Prova n. 20334-2020 REV. 0

Prova	Metodo	Risultato	Incertezza	UM	Limiti	Data inizio Data fine
> 1-cloro-2-nitrobenzene *	EPA 3510C 1996 + EPA 8270E 2018	<0,05		μg/L	≤ 0,5 (1)	25/11/2020 30/11/2020
> 1-cloro-3-nitrobenzene *	EPA 3510C 1996 + EPA 8270E 2018	<0,05		μg/L	≤ 0,5 (1)	25/11/2020 30/11/2020
> 1-cloro-4-nitrobenzene *	EPA 3510C 1996 + EPA 8270E 2018	<0,05		μg/L	≤ 0,5 (1)	25/11/2020 30/11/2020
CLOROFENOLI						
> 2-Clorofenolo *	EPA 3510C 1996 + EPA 8270E 2018	<18		μg/L	≤ 180 (1)	25/11/2020 30/11/2020
> 2,4-Diclorofenolo *	EPA 3510C 1996 + EPA 8270E 2018	<10		μg/L	≤ 110 ⁽¹⁾	25/11/2020 30/11/2020
> 2,4,6-Triclorofenolo *	EPA 3510C 1996 + EPA 8270E 2018	<0,05		μg/L	≤ 5 (1)	25/11/2020 30/11/2020
> Pentaclorofenolo *	EPA 3510C 1996 + EPA 8270E 2018	<0,05		μg/L '	≤ 0,5 (1)	25/11/2020 30/11/2020
FITOFARMACI	M.U. 2364:2010					
> Alachlor *	M.U. 2364:2010	<0,01	*	· μg/L	≤ 0,1 (1)	25/11/2020 30/11/2020
> Aldrin *	M.U. 2364:2010	<0,003		μg/L	≤ 0,03 (1)	25/11/2020 30/11/2020
> Atrazina *	M.U. 2364:2010	<0,03		μg/L	≤ 0,3 (1)	25/11/2020 30/11/2020
> alfa-esaclorocicloesano *	M.U. 2364:2010	<0,01		μg/L	≤ 0,1 (1)	25/11/2020 30/11/2020
> beta-esaclorocicloesano *	M.U. 2364:2010	<0,01		μg/L	≤ 0,1 (1)	25/11/2020 30/11/2020
> gamma- esaclorocicloesano *	M.U. 2364:2010	<0,01		μg/L	≤ 0,1 (1)	25/11/2020 30/11/2020
> Clordano *	M.U. 2364:2010	<0,01		μg/L	≤ 0,1 (1)	25/11/2020 30/11/2020
> DDD, DDT, DDE *	M.U. 2364:2010	<0,01		μg/L	≤ 0,1 (1)	25/11/2020 30/11/2020
> Dieldrin *	M.U. 2364:2010	<0,003	A il	μg/L	≤ 0,03 (1)	25/11/2020 30/11/2020
> Endrin *	M.U. 2364:2010	<0,01		μg/L	≤ 0,1 (1)	25/11/2020 30/11/2020

Via G.M. Galanti, 16, 72100 Brindisi Tel. 0831 099501 Fax. 0831 099599 E-mail: dap.br@arpa.puglia.it

PEC dap.br.arpapuglia@pec.rupar.puglia.it

MD 182 - Rev. 5 del 18.10.2016

Pagina 5 di 8

LAB N° 1119 L

Rapporto di Prova n. 20334-2020 REV. 0

Prova	Metodo	Risultato	Incertezza	UM	Limi	ti	Data inizio Data fine
> Sommatoria Fitofarmaci *	M.U. 2364:2010	<0,05		μg/L	≤ 0,5	(1)	25/11/2020 30/11/2020
ALTRI PESTICIDI	* · · · · · · · · · · · · · · · · · · ·			65. M			
> Clorpirifos *	M.U. 2364:2010	<0,01		μg/L			25/11/2020 30/11/2020
> Deltametrina *	M.U. 2364:2010	<0,01		μg/L			25/11/2020 30/11/2020
> Dimetoato *	M.U. 2364:2010	<0,01		μg/L			25/11/2020 30/11/2020
> Fention *	M.U. 2364:2010	<0,01		μg/L			25/11/2020 30/11/2020
> Oxifluorfen *	M.U. 2364:2010	<0,01		μg/L			25/11/2020 30/11/2020
> Paration *	M.U. 2364:2010	<0,01		μg/L			25/11/2020 30/11/2020
> Simazina *	M.U. 2364:2010	<0,01	,	μg/L			25/11/2020 30/11/2020
pH *	UNI EN ISO 10523:2012	7,2	± 0,5	Unità di pH		٠	24/11/2020 24/11/2020
Annotazioni: temperatura misu	rata: 15.0 °C orario misurazione: 10.00						
Conducibilità *	UNI ISO 27888:1995	3070	± 614	μS cm-1 a 20°C			24/11/2020 24/11/2020
Test report: Correzione della t	emperatura mediante un dispostivo di comp	ensazione della te	mperatura				
Ossidabilità *	UNI 11758:2019	<0,5		mg/L di O2			24/11/2020 24/11/2020
BOD5 *	APHA Standard Methods 5210/D (Metodo respirometrico)	<5		mg/l O2			24/11/2020 29/11/2020
Azoto Ammoniacale *	UNI 11669:2017	<0,02		mg/L N-NH4			24/11/2020 24/11/2020
Nitriti *	UNI EN 26777:1994	<0,05		mg/L NO2	≤ 0,5	(1)	24/11/2020 24/11/2020
Nitrati *	MP-BR-C-AQ 02 rev 0 2018	44,5	g.	mg/L NO3		•	24/11/2020 24/11/2020
Cloruri *	APAT CNR IRSA 4090 B Man 29 2003	705	± 56	mg/L		•	24/11/2020 24/11/2020
Cianuri (liberi) *	EPA Method OIA-1677-09 2010	<5		μg/L	≤ 50	(1)	25/11/2020 26/11/2020

Via G.M. Galanti, 16, 72100 Brindisi Tel. 0831 099501 Fax. 0831 099599 E-mail: dap.br@arpa.puglia.it

PEC dap.br.arpapuglia@pec.rupar.puglia.it

MD 182 - Rev. 5 del 18.10.2016

Pagina 6 di 8

LAB Nº 1119 L

Rapporto di Prova n. 20334-2020 REV. 0

Prova	Metodo	Risultato	Incertezza	им	Limiti	Data inizio Data fine
PCB *	EPA 3510C 1996 + EPA 8270D 2014	<0,001		μg/L	≤ 0,01 (1)	25/11/2020 30/11/2020
Magnesio *	UNI EN ISO 17294-2:2016	58	9 v	mg/L		24/11/2020 24/11/2020
Potassio *	UNI EN ISO 17294-2:2016	19,00	± 2,60	mg/L		24/11/2020 24/11/2020
Calcio *	UNI EN ISO 17294-2:2016	109	± 12	mg/L		24/11/2020 24/11/2020
Sodio *	UNI EN ISO 17294-2:2016	353	± 47	mg/L		24/11/2020 24/11/2020
Arsenico	UNI EN ISO 17294-2:2016	<2		μg/L	≤ 10 ⁽¹⁾	24/11/2020 24/11/2020
Cadmio	UNI EN ISO 17294-2:2016	<2		μg/L	≤ 5 (1)	24/11/2020 24/11/2020
Cromo VI *	, ISO 23913:2006,	<5	*	μg/L	(1)	25/11/2020 26/11/2020
Cromo	UNI EN ISO 17294-2:2016	<4		µg/L	≤ 50 (1)	24/11/2020 24/11/2020
Ferro *	UNI EN ISO 17294-2:2016	<25		μg/L	≤ 200 (1)	24/11/2020 24/11/2020
Manganese	UNI EN ISO 17294-2:2016	<4		μg/L	≤ 50 (1)	24/11/2020 24/11/2020
Mercurio *	UNI EN ISO 17294-2:2016	<1		µg/L	≤ 1 (1)	24/11/2020 24/11/2020
Nichel	UNI EN ISO 17294-2:2016	<2		μg/L	≤ 20 (1)	24/11/2020 24/11/2020
Piombo	UNI EN ISO 17294-2:2016	<4		μg/L	≤ 10 (1)	24/11/2020 24/11/2020
Rame	UNI EN ISO 17294-2:2016	0,8	± 0,1	μg/L	≤ 1000 (1)	24/11/2020 24/11/2020

Via G.M. Galanti, 16, 72100 Brindisi Tel. 0831 099501 Fax. 0831 099599 E-mail: dap.br@arpa.puglia.it

PEC dap.br.arpapuglia@pec.rupar.puglia.it

MD 182 - Rev. 5 del 18.10.2016

Pagina 7 di 8

LAB Nº 1119 L

Rapporto di Prova n. 20334-2020 REV. 0

ANALISI CHIMICHE

Prova	Metodo	Risultato	Incertezza	UM	Limiti	Data inizio Data fine
Zinco	UNI EN ISO 17294-2:2016	5	± 1	µg/L	≤ 3000 (1)	24/11/2020 24/11/2020

⁻ Eventuali consigli, raccomandazioni, opinioni ed interpretazioni contenute nel presente rapporto di prova, non sono oggetto di accreditamento da parte di ACCREDIA.

Non conforme per il tenore in 1,1-dicloroetilene che risulta essere presente in quantità superiore alla Concentrazione Soglia di Contaminazione stabilita dal D.Lgs 152/06 e s.m.i. All.5, parte IV, Tab.2.

Il Dirigente Responsabile Dott. Vincenzo Musolino

La firma è sostituita dal nominativo a stampa del soggetto responsabile, ai sensi dell'art. 3 del D.Lgs 39/1993 (1) D.lgs 152/06 Tab.2 All.5 Parte IV

Note:

- I risultati contenuti nel presente rapporto di prova si riferiscono esclusivamente al campione/i o alla aliquota campionaria sottoposta a prova così come ricevuti. E' vietata la riproduzione del presente rapporto di prova o del suo contenuto, sia in toto sia in parte, se non per gli usi consentiti dalla Legge o con approvazione scritta da parte di questo Laboratorio.
- Il laboratorio, per campioni inerenti i controlli ufficiale sugli alimenti, conserva i campioni analizzati per i tempi previsti nella carta dei servizi, compatibilmente con la loro deteriorabilità, al fine di soddisfare eventuali richieste analitiche aggiuntive del cliente stesso.
- Nel caso in cui il valore sia espresso nella forma < x,xx deve intendersi che, per tutte le prove, tale valore risulta non quantificabile in quanto al di sotto del limite di quantificazione del laboratorio relativamente al metodo usato per la prova in oggetto ,oppure, per le sole prove biologiche, l'esatta quantificazione non si ritiene significativa ai fini della valutazione del campione. Nel caso il cui valore sia espresso nella forma >x,xx, deve intendersi che l'esatta quantificazione non si ritiene significativa ai fini della valutazione del campione.
- Per le prove accreditate che riguardano determinazioni di residui/tracce, quando la procedura di pretrattamento (es. concentrazione/purificazione/estrazione) può influenzare il recupero, questo è valutato ad ogni sessione analitica ed è riportato nel presente RdP in calce ai parametri interessati o nel giudizio, specificando se sia stato utilizzato nel calcolo dei risultati.
- Per le prove chimiche, l'incertezza indicata è espressa come incertezza estesa (U) con un fattore di copertura K=2 per un livello di fiducia pari al 95%.
- La modalità di campionamento eventualmente riportate in prima pagina non rientrano nell'ambito dell'accreditamento Accredia.

Fine Rapporto di prova

^{*} Prova non Accreditata da Accredia

ARPA PUGLIA RETE LABORATORI

Arpa Puglia Dipartimento di Brindisi

Via G.M. Galanti, 16, 72100 Brindisi Tel. 0831 099501 Fax. 0831 099599 E-mail: dap.br@arpa.puglia.it

PEC dap.br.arpapuglia@pec.rupar.puglia.it

MD 182 - Rev. 5 del 18.10.2016

Pagina 8 di 8

LAB N° 1119 L

Rapporto di Prova n. 20334-2020 REV. 0

Brindisi, 02/01/2021 11:44:22

Via G.M. Galanti, 16, 72100 Brindisi Tel. 0831 099501 Fax. 0831 099599 E-mail: dap.br@arpa.puglia.it

PEC dap.br.arpapuglia@pec.rupar.puglia.it

MD 182 - Rev. 5 del 18.10.2016

Pagina 1 di 8

LAB Nº 1119 L

Rapporto di Prova n. 20411-2020 REV. 0

Categoria Merceologica:

ACQUE SOTTERRANEE

Materiale da saggio:

ACQUA DA POZZO SPIA

Procedura di campionamento: CAMPIONAMENTO A CURA DEL PRELEVATORE

Cliente:

REGIONE PUGLIA - Lungomare N. Sauro 33 - Bari

Presentato:

da SERVIZI TERRITORIALI ARPA PUGLIA DAP BRINDISI con verbale 873

Consegna in data:

24/11/2020

Temperatura d'arrivo rilevata: 8°C

Data Prelievo:

24/11/2020

Prelevato c/o:

Brindisi - Formica Ambiente S.r.I. "Pozzo 4A"

Sigillo:

Integro

Conservazione:

Frigorifero

Prova	Metodo	Risultato	Incertezza	UM	Limit	ti	Data inizio Data fine
COMPOSTI ORGANICI AROMATICI	UNI EN ISO 15680:2005						
> Benzene *	UNI EN ISO 15680:2005	<0,1		μg/L	≤ 1	(1)	25/11/2020 30/11/2020
> Etilbenzene *	UNI EN ISO 15680:2005	<3		μg/L	≤ 50	(1)	25/11/2020 30/11/2020
> Stirene *	UNI EN ISO 15680:2005	<3		μg/L	≤ 25	(1)	25/11/2020 30/11/2020
> Toluene *	UNI EN ISO 15680:2005	<1		μg/L	≤ 15	(1)	25/11/2020 30/11/2020
> m,p-Xilene *	UNI EN ISO 15680:2005	<0,05		μg/L			25/11/2020 30/11/2020
ALIFATICI CLORURATI CANCEROGENI							
> Triclorometano *	UNI EN ISO 15680:2005	<0,05		μg/L	≤ 0,15	(1)	25/11/2020 30/11/2020
> Cloruro di vinile *	UNI EN ISO 15680:2005	<0,05		μg/L	≤ 0,5	(1)	25/11/2020 30/11/2020
> 1,2-Dicloroetano *	UNI EN ISO 15680:2005	<0,7		μg/L	≤ 3	(1)	25/11/2020 30/11/2020
> 1,1-Dicloroetilene *	UNI EN ISO 15680:2005	0,160	± 0,070	μg/L	≤ 0,05	(1)	25/11/2020 30/11/2020
> Tricloroetilene *	UNI EN ISO 15680:2005	<0,01		μg/L	≤ 1,5	(1)	25/11/2020 30/11/2020
> Tetracloroetilene *	UNI EN ISO 15680:2005	<0,01		μg/L	≤ 1,1	(1)	25/11/2020 30/11/2020
> Esaclorobutadiene *	UNI EN ISO 15680:2005	0,020	± 0,009	µg/L	≤ 0,15	(1)	25/11/2020 30/11/2020

Via G.M. Galanti, 16, 72100 Brindisi Tel. 0831 099501 Fax. 0831 099599 E-mail: dap.br@arpa.puglia.it

PEC dap.br.arpapuglia@pec.rupar.puglia.it

MD 182 - Rev. 5 del 18.10.2016

Pagina 2 di 8

LAB Nº 1119 L

Rapporto di Prova n. 20411-2020 REV. 0

Prova	Metodo	Risultato	Incertezza	UM	Limiti	Data inizio Data fine
> Sommatoria Organo Alogenati	UNI EN ISO 15680:2005	<1		μg/L	≤ 10 (1)	25/11/2020 30/11/2020
ALIFATICI CLORURATI NON CANCEROGENI			# #			
> 1,1-Dicloroetano *	UNI EN ISO 15680:2005	<0,8		μg/L	≤ 810 (1)	25/11/2020 30/11/2020
> 1,2-Dicloroetilene *	UNI EN ISO 15680:2005	<0,8		μg/L	≤ 60 (1)	25/11/2020 30/11/2020
> 1,2-Dicloropropano *	UNI EN ISO 15680:2005	<0,08		μ <mark>g</mark> /L	≤ 0,15 (1)	25/11/2020 30/11/2020
> 1,1,2-Tricloroetano *	UNI EN ISO 15680:2005	<0,08		μg/L	≤ 0,2 (1)	25/11/2020 30/11/2020
> 1,2,3-Tricloropropano *	UNI EN ISO 15680:2005	<0,001		μg/L	≤ 0,001 (1)	25/11/2020 30/11/2020
> 1,1,2,2-Tetracloroetano *	UNI EN ISO 15680:2005	<0,01	1	μg/L	≤ 0,05 (1)	25/11/2020 30/11/2020
ALIFATICI ALOGENATI CANCEROGENI						
> Tribromometano *	UNI EN ISO 15680:2005	<0,01		μg/L	≤ 0,3 (1)	25/11/2020 30/11/2020
> 1,2-Dibromoetano *	UNI EN ISO 15680:2005	<0,001		μg/L	≤ 0,001 (1)	25/11/2020 30/11/2020
> Dibromoclorometano *	UNI EN ISO 15680:2005	<0,01		μg/L	≤ 0,13 (1)	25/11/2020 30/11/2020
> Bromodiclorometano *	UNI EN ISO 15680:2005	<0,04		μg/L	≤ 0,17 (1)	25/11/2020 30/11/2020
CLOROBENZENI 1						
> Monoclorobenzene *	UNI EN ISO 15680:2005	<3		μg/L	≤ 40 (1)	25/11/2020 30/11/2020
> 1,2-Diclorobenzene *	UNI EN ISO 15680:2005	<2		μg/L	≤ 270 (1)	25/11/2020 30/11/2020
> 1,4-Diclorobenzene *	UNI EN ISO 15680:2005	<0,1		μg/L	≤ 0,5 (1)	25/11/2020 30/11/2020
> 1,2,4-Triclorobenzene *	UNI EN ISO 15680:2005	<2 *		μg/̈L	≤ 190 (1)	25/11/2020 30/11/2020

Via G.M. Galanti, 16, 72100 Brindisi Tel. 0831 099501 Fax. 0831 099599 E-mail: dap.br@arpa.puglia.it

PEC dap.br.arpapuglia@pec.rupar.puglia.it

MD 182 - Rev. 5 del 18.10.2016

Pagina 3 di 8

LAB Nº 1119 L

Rapporto di Prova n. 20411-2020 REV. 0

Prova	Metodo	Risultato	Incertezza	UM	Limiti	i	Data inizio Data fine
CLOROBENZENI 2	EPA 3510C 1996 + EPA 8270E 2018	3					
> Esaclorobenzene *	EPA 3510C 1996 + EPA 8270E 2018	<0,001		µg/L	≤ 0,01	(1)	25/11/2020 30/11/2020
> Pentaclorobenzene *	EPA 3510C 1996 + EPA 8270E 2018	<0,5		μg/L	≤ 5	(1)	25/11/2020 30/11/2020
> 1,2,4,5-Tetraclorobenzene *	EPA 3510C 1996 + EPA 8270E 2018	<0,2		μg/L	≤ 1,8	(1)	25/11/2020 30/11/2020
POLICICLICI AROMATICI							
> Benzo(a)pirene *	EPA 3510C 1996 + EPA 8270E 2018	<0,002		μg/L	≤ 0,01	(1)	25/11/2020 30/11/2020
> Benzo(a)antracene *	EPA 3510C 1996 + EPA 8270E 2018	<0,01		μg/L	≤ 0,1	(1)	25/11/2020 30/11/2020
> Benzo(b)fluorantene *	EPA 3510C 1996 + EPA 8270E 2018	<0,01		μg/L '	≤ 0,1	(1)	25/11/2020 30/11/2020
> Benzo(k)fluorantene *	EPA 3510C 1996 + EPA 8270E 2018	<0,02		μ <mark>g</mark> /L	≤ 0,05	(1)	25/11/202 30/11/202
> Benzo(g,h,i)perilene *	EPA 3510C 1996 + EPA 8270E 2018	<0,001		μg/L	≤ 0;01	(1)	25/11/202 30/11/202
> Dibenzo(a,h)antracene *	EPA 3510C 1996 + EPA 8270E 2018	<0,002		μg/L	≤ 0,01	(1)	25/11/202 30/11/202
> Crisene *	EPA 3510C 1996 + EPA 8270E 2018	<0,05		µg/L	≤ 5	(1)	25/11/2020 30/11/2020
> Pirene *	EPA 3510C 1996 + EPA 8270E 2018	<0,05		μg/L	≤ 50	(1)	25/11/2020 30/11/2020
> Indeno(1,2,3-cd)pirene *	EPA 3510C 1996 + EPA 8270E 2018	<0,02		μg/L	≤ 0,1	(1)	25/11/2020 30/11/2020
> Sommatoria IPA *	Calcolo	<0,05		μg/L	≤ 0,1	(1)	25/11/2020 30/11/2020
Test report: Somma delle voci	31, 32, 33, 36 Tab.2 All.5 Parte IV D.Lgs	152/06					
NITROBENZENI							
> Nitrobenzene *	EPA 3510C 1996 + EPA 8270E 2018 *	<0,35	×	μg/L	≤ 3,5	(1)	25/11/202 30/11/202
> 1,2-Dinitrobenzene *	EPA 3510C 1996 + EPA 8270E 2018	<1		µg/L	≤ 15	(1)	25/11/202 30/11/202
> 1,3-Dinitrobenzene *	EPA 3510C 1996 + EPA 8270E 2018	<0,35		μg/L	≤ 3,7	(1)	25/11/202 30/11/202

Via G.M. Galanti, 16, 72100 Brindisi Tel. 0831 099501 Fax. 0831 099599 E-mail: dap.br@arpa.puglia.it

PEC dap.br.arpapuglia@pec.rupar.puglia.it

MD 182 - Rev. 5 del 18.10.2016

Pagina 4 di 8

LAB Nº 1119 L

Rapporto di Prova n. 20411-2020 REV. 0

Prova	Metodo	Risultato	Incertezza	им	Limiti		Data inizio Data fine
> 1-cloro-2-nitrobenzene *	EPA 3510C 1996 + EPA 8270E 2018	<0,05		µg/L	≤ 0,5	(1)	25/11/2020 30/11/2020
> 1-cloro-3-nitrobenzene *	EPA 3510C 1996 + EPA 8270E 2018	<0,05	9	µg/L	≤ 0,5	(1)	25/11/2020 30/11/2020
> 1-cloro-4-nitrobenzene *	EPA 3510C 1996 + EPA 8270E 2018	<0,05		μg/L	≤ 0,5	(1)	25/11/2020 30/11/2020
CLOROFENOLI							
> 2-Clorofenolo *	EPA 3510C 1996 + EPA 8270E 2018	<18		μg/L	≤ 180	(1)	25/11/2020 30/11/2020
> 2,4-Diclorofenolo *	EPA 3510C 1996 + EPA 8270E 2018	<10		μg/L	≤ 110	(1)	25/11/2020 30/11/2020
> 2,4,6-Triclorofenolo *	EPA 3510C 1996 + EPA 8270E 2018	<0,05		μg/L	≤ 5	(1)	25/11/2020 30/11/2020
> Pentaclorofenolo *	EPA 3510C 1996 + EPA 8270E 2018	<0,05		μg/L	≤ 0,5	(1)	25/11/2020 30/11/2020
FITOFARMACI	M.U. 2364:2010						
> Alachlor *	M.U. 2364:2010	<0,01	,	μg/L	≤ 0,1	(1)	25/11/2020 30/11/2020
> Aldrin *	M.U. 2364:2010	<0,003		μg/L	≤ 0,03	(1)	25/11/2020 30/11/2020
> Atrazina *	M.U. 2364:2010	<0,03		μg/L	≤ 0,3	(1)	25/11/2020 30/11/2020
> alfa-esaclorocicloesano *	M.U. 2364:2010	<0,01		μg/L	≤ 0,1	(1)	25/11/2020 30/11/2020
> beta-esaclorocicloesano *	M.U. 2364:2010	<0,01		μg/L	≤ 0,1	(1)	25/11/2020 30/11/2020
> gamma- esaclorocicloesano *	M.U. 2364:2010	<0,01		μg/L	≤ 0,1	(1)	25/11/2020 30/11/2020
> Clordano *	M.U. 2364:2010	<0,01		μg/L	≤ 0,1	(1)	25/11/2020 30/11/2020
> DDD, DDT, DDE *	M.U. 2364:2010	<0,01		μg/L	≤ 0,1	(1)	25/11/2020 30/11/2020
> Dieldrin *	M.U. 2364:2010	<0,003		μg/L [*]	≤ 0,03	(1)	25/11/2020 30/11/2020
> Endrin *	M.U. 2364:2010	<0,01		μg/L	≤ 0,1	(1)	25/11/2020 30/11/2020

Via G.M. Galanti, 16, 72100 Brindisi Tel. 0831 099501 Fax. 0831 099599

PEC dap.br.arpapuglia@pec.rupar.puglia.it

E-mail: dap.br@arpa.puglia.it

MD 182 - Rev. 5 del 18.10.2016

Pagina 5 di 8

LAB Nº 1119 L

Rapporto di Prova n. 20411-2020 REV. 0

Prova	Metodo	Risultato	Incertezza	UM	Limi	ti	Data inizio Data fine
> Sommatoria Fitofarmaci *	M.U. 2364:2010	<0,05		μg/L	≤ 0,5	(1)	25/11/2020 30/11/2020
ALTRI PESTICIDI	9. *					*	
> Clorpirifos *	M.U. 2364:2010	<0,01		μg/L			25/11/2020 30/11/2020
> Deltametrina *	M.U. 2364:2010	<0,01		μg/L			25/11/2020 30/11/2020
> Dimetoato *	M.U. 2364:2010	<0,01		μg/L			25/11/2020 30/11/2020
> Fention *	M.U. 2364:2010	<0,01		μg/L			25/11/2020 30/11/2020
> Oxifluorfen *	M.U. 2364:2010	<0,01		μg/L			25/11/2020 30/11/2020
> Paration *	M.U. 2364:2010	<0,01		μg/L '			25/11/2020 30/11/2020
> Simazina *	M.U. 2364:2010	<0,01		μg/L			25/11/2020 30/11/2020
pH *	UNI EN ISO 10523:2012	7,2	± 0,5	Unità di pH	,		25/11/2020 25/11/2020
Annotazioni: temperatura misu	rata: 19.9 °C orario misurazione: 11.00						
Conducibilità *	UNI ISO 27888:1995	3950	± 790	μS cm-1 a 20°C			25/11/2020 25/11/2020
Test report: Correzione della t	temperatura mediante un dispostivo di com	pensazione della t	emperatura				
Ossidabilità *	UNI 11758:2019	<0,5		mg/L di O2			25/11/2020 25/11/2020
BOD5 *	APHA Standard Methods 5210/D (Metodo respirometrico)	<5		mg/I O2			25/11/2020 30/11/2020
Azoto Ammoniacale *	UNI 11669:2017	<0,02		mg/L N-NH4			25/11/2020 25/11/2020
Nitriti *	UNI EN 26777:1994	<0,05		mg/L NO2	≤ 0,5	(1)	25/11/2020 25/11/2020
Nitrati *	MP-BR-C-AQ 02 rev 0 2018	21,0		mg/L NO3			25/11/2020 25/11/2020
Cloruri *	APAT CNR IRSA 4090 B Man 29 2003	936	± 75	mg/L			25/11/2020 25/11/2020
Cianuri (liberi) *	EPA Method OIA-1677-09 2010	<5		μg/L	≤ 50	(1)	25/11/2020 26/11/2020

Via G.M. Galanti, 16, 72100 Brindisi Tel. 0831 099501 Fax. 0831 099599

E-mail: dap.br@arpa.puglia.it

PEC dap.br.arpapuglia@pec.rupar.puglia.it

MD 182 - Rev. 5 del 18.10.2016

Pagina 6 di 8

LAB Nº 1119 L

Rapporto di Prova n. 20411-2020 REV. 0

Prova	Metodo	Risultato	Incertezza	UM	Limiti	ĺ	Data inizio Data fine
PCB *	EPA 3510C 1996 + EPA 8270D 2014	<0,001		μg/L	≤ 0,01	(1)	25/11/2020 30/11/2020
Magnesio *	UNI EN ISO 17294-2:2016	777		mg/L			01/12/2020 01/12/2020
Potassio *	UNI EN ISO 17294-2:2016	18,40	± 2,60	mg/L			01/12/2020 01/12/2020
Calcio *	UNI EN ISO 17294-2:2016	127	± 14	mg/L			01/12/2020 01/12/2020
Sodio *	UNI EN ISO 17294-2:2016	461	± 59	mg/L			01/12/2020 01/12/2020
Arsenico	UNI EN ISO 17294-2:2016	<2		μg/L	≤ 10	(1)	01/12/2020 01/12/2020
Cadmio	UNI EN ISO 17294-2:2016	<2	×	μg/L	≤ 5	(1)	01/12/2020 01/12/2020
Cromo VI *	ISO 23913:2006	<5 ₁		μg/L		(1)	25/11/2020 26/11/2020
Cromo	UNI EN ISO 17294-2:2016	<4	·e	μg/L	≤ 50	(1)	01/12/2020 01/12/2020
Ferro *	UNI EN ISO 17294-2:2016	<25	*	μg/L	≤ 200	(1)	01/12/2020 01/12/2020
Manganese	UNI EN ISO 17294-2:2016	<4		μg/L	≤ 50	(1)	01/12/2020 01/12/2020
Mercurio *	UNI EN ISO 17294-2:2016	<1		μg/L	≤ 1	(1)	01/12/2020 01/12/2020
Nichel	UNI EN ISO 17294-2:2016	2	± 1	μg/L	≤ 20	(1)	01/12/2020 01/12/2020
Piombo	UNI EN ISO 17294-2:2016	<4		μg/L	≤ 10	(1)	01/12/2020 01/12/2020
Rame	UNI EN ISO 17294-2:2016	1,1	± 0,2	μg/L	≤ 1000	(1)	01/12/2020 01/12/2020

Via G.M. Galanti, 16, 72100 Brindisi Tel. 0831 099501 Fax. 0831 099599 E-mail: dap.br@arpa.puglia.it

PEC dap.br.arpapuglia@pec.rupar.puglia.it

MD 182 - Rev. 5 del 18.10.2016

Pagina 7 di 8

LAB Nº 1119 L

Rapporto di Prova n. 20411-2020 REV. 0

ANALISI CHIMICHE

Prova	Metodo	Risultato	Incertezza	UM	Limiti	Data inizio Data fine
Zinco	UNI EN ISO 17294-2:2016	<3		μg/L	≤ 3000 (1)	01/12/2020 01/12/2020

⁻ Eventuali consigli, raccomandazioni, opinioni ed interpretazioni contenute nel presente rapporto di prova, non sono oggetto di accreditamento da parte di ACCREDIA.

Non conforme per il tenore in 1,1-dicloroetilene che risulta essere presente in quantità superiore alla Concentrazione Soglia di Contaminazione stabilita dal D.Lgs 152/06 e s.m.i. All.5, parte IV, Tab.2.

Il Dirigente Responsabile Dott. Vincenzo Musolino

La firma è sostituita dal nominativo a stampa del soggetto responsabile, ai sensi dell'art. 3 del D.Lgs 39/1993 (1) D.lgs 152/06 Tab.2 All.5 Parte IV

Note:

- I risultati contenuti nel presente rapporto di prova si riferiscono esclusivamente al campione/i o alla aliquota campionaria sottoposta a prova così come ricevuti. E' vietata la riproduzione del presente rapporto di prova o del suo contenuto, sia in toto sia in parte, se non per gli usi consentiti dalla Legge o con approvazione scritta da parte di questo Laboratorio.
- Il laboratorio, per campioni inerenti i controlli ufficiale sugli alimenti, conserva i campioni analizzati per i tempi previsti nella carta dei servizi, compatibilmente con la loro deteriorabilità, al fine di soddisfare eventuali richieste analitiche aggiuntive del cliente stesso.
- Nel caso in cui il valore sia espresso nella forma < x,xx deve intendersi che, per tutte le prove, tale valore risulta non quantificabile in quanto al di sotto del limite di quantificazione del laboratorio relativamente al metodo usato per la prova in oggetto ,oppure, per le sole prove biologiche, l'esatta quantificazione non si ritiene significativa ai fini della valutazione del campione. Nel caso il cui valore sia espresso nella forma >x,xx, deve intendersi che l'esatta quantificazione non si ritiene significativa ai fini della valutazione del campione.
- Per le prove accreditate che riguardano determinazioni di residui/tracce, quando la procedura di pretrattamento (es. concentrazione/purificazione/estrazione) può influenzare il recupero, questo è valutato ad ogni sessione analitica ed è riportato nel presente RdP in calce ai parametri interessati o nel giudizio, specificando se sia stato utilizzato nel calcolo dei risultati.
- Per le prove chimiche, l'incertezza indicata è espressa come incertezza estesa (U) con un fattore di copertura K=2 per un livello di fiducia pari al 95%.
- La modalità di campionamento eventualmente riportate in prima pagina non rientrano nell'ambito dell'accreditamento Accredia.

Fine Rapporto di prova Brindisi, 02/01/2021 11:50:05

^{*} Prova non Accreditata da Accredia

Via G.M. Galanti, 16, 72100 Brindisi Tel. 0831 099501 Fax. 0831 099599 E-mail: dap.br@arpa.puglia.it

PEC dap.br.arpapuglia@pec.rupar.puglia.it

MD 182 - Rev. 5 del 18.10.2016

Pagina 8 di 8

LAB Nº 1119 L

Rapporto di Prova n. 20411-2020 REV. 0

Via G.M. Galanti, 16, 72100 Brindisi Tel. 0831 099501 Fax. 0831 099599 E-mail: dap.br@arpa.puglia.it

PEC dap.br.arpapuglia@pec.rupar.puglia.it

MD 182 - Rev. 5 del 18.10.2016

Pagina 1 di 8

LAB Nº 1119 L

Rapporto di Prova n. 20410-2020 REV. 0

Categoria Merceologica:

ACQUE SOTTERRANEE

Materiale da saggio:

ACQUA DA POZZO SPIA

Procedura di campionamento: CAMPIONAMENTO A CURA DEL PRELEVATORE

Cliente:

REGIONE PUGLIA - Lungomare N. Sauro 33 - Bari

Presentato:

da SERVIZI TERRITORIALI ARPA PUGLIA DAP BRINDISI con verbale 872

Consegna in data:

24/11/2020

Temperatura d'arrivo rilevata: 8°C

Data Prelievo:

24/11/2020

Prelevato c/o:

Brindisi - Formica Ambiente S.r.I. "Pozzo 5A"

Sigillo:

Integro

Conservazione:

Frigorifero

Prova	Metodo	Risultato	Incertezza	UM	Limit	ti	Data inizio Data fine
COMPOSTI ORGANICI AROMATICI	UNI EN ISO 15680:2005						
> Benzene *	UNI EN ISO 15680:2005	<0,2		μg/L	≤ 1	(1)	25/11/2020 30/11/2020
> Etilbenzene *	UNI EN ISO 15680:2005	<3		μg/L	≤ 50	(1)	25/11/2020 30/11/2020
> Stirene *	UNI EN ISO 15680:2005	<3		μg/L	≤ 25	(1)	25/11/2020 30/11/2020
> Toluene *	UNI EN ISO 15680:2005	<1		μg/L	≤ 15	(1)	25/11/2020 30/11/2020
> m,p-Xilene *	UNI EN ISO 15680:2005	<0,05		μg/L			25/11/2020 30/11/2020
ALIFATICI CLORURATI CANCEROGENI							
> Triclorometano *	UNI EN ISO 15680:2005	<0,05		μg/L	≤ 0,15	(1)	25/11/2020 30/11/2020
> Cloruro di vinile *	UNI EN ISO 15680:2005	<0,05		μg/L	≤ 0,5	(1)	25/11/2020 30/11/2020
> 1,2-Dicloroetano *	UNI EN ISO 15680:2005	<0,7		μg/L	≤ 3	(1)	25/11/2020 30/11/2020
> 1,1-Dicloroetilene *	UNI EN ISO 15680:2005	2,300	± 1,012	μg/L	≤ 0,05	(1)	25/11/2020 30/11/2020
> Tricloroetilene *	UNI EN ISO 15680:2005	<0,01		μg/L	≤ 1,5	(1)	25/11/2020 30/11/2020
> Tetracloroetilene *	UNI EN ISO 15680:2005	<0,01		μg/L	≤ 1,1	(1)	25/11/2020 30/11/2020
> Esaclorobutadiene *	UNÍ EN ISO 15680:2005	0,018	± 0,008	μg/L	≤ 0,15	(1)	25/11/2020 30/11/2020

Via G.M. Galanti, 16, 72100 Brindisi Tel. 0831 099501 Fax. 0831 099599 E-mail: dap.br@arpa.puglia.it

PEC dap.br.arpapuglia@pec.rupar.puglia.it

MD 182 - Rev. 5 del 18.10.2016

Pagina 2 di 8

LAB Nº 1119 L

Rapporto di Prova n. 20410-2020 REV. 0

Prova	Metodo	Risultato	Incertezza	UM	Limi	ti .	Data inizio Data fine
> Sommatoria Organo Alogenati	UNI EN ISO 15680:2005	<1		μg/L	≤ 10	(1)	25/11/2020 30/11/2020
ALIFATICI CLORURATI NON CANCEROGENI			*				8 13
> 1,1-Dicloroetano *	UNI EN ISO 15680:2005	<0,8		μg/L	≤ 810	(1)	25/11/2020 30/11/2020
> 1,2-Dicloroetilene *	UNI EN ISO 15680:2005	<0,8		μg/L	≤ 60	(1)	25/11/2020 30/11/2020
> 1,2-Dicloropropano *	UNI EN ISO 15680:2005	<0,08		μg/L	≤ 0,15	(1)	25/11/2020 30/11/2020
> 1,1,2-Tricloroetano *	UNI EN ISO 15680:2005	<0,08		μg/L	≤ 0,2	(1)	25/11/2020 30/11/2020
> 1,2,3-Tricloropropano *	UNI EN ISO 15680:2005	<0,001		μg/L	≤ 0,001	(1)	25/11/2020 30/11/2020
> 1,1,2,2-Tetracloroetano *	UNI EN ISO 15680:2005	<0,01		μg/L	≤ 0,05	(1)	25/11/2020 30/11/2020
ALIFATICI ALOGENATI CANCEROGENI	•						
> Tribromometano *	UNI EN ISO 15680:2005	<0,01	Œ	μg/L	≤ 0,3	(1)	25/11/2020 30/11/2020
> 1,2-Dibromoetano *	UNI EN ISO 15680:2005	<0,001		μg/L	≤ 0,001	(1)	25/11/2020 30/11/2020
> Dibromoclorometano *	UNI EN ISO 15680:2005	<0,01		μg/L	≤ 0,13	(1)	25/11/2020 30/11/2020
> Bromodiclorometano *	UNI EN ISO 15680:2005	<0,04		μg/L	≤ 0,17	(1)	25/11/2020 30/11/2020
CLOROBENZENI 1							
> Monoclorobenzene *	UNI EN ISO 15680:2005	<3		μg/L	≤ 40	(1)	25/11/2020 30/11/2020
> 1,2-Diclorobenzene *	UNI EN ISO 15680:2005	<2		μg/L	≤ 270	(1)	25/11/2020 30/11/2020
> 1,4-Diclorobenzene *	UNI EN ISO 15680:2005	<0,1		μg/L	≤ 0,5	(1)	25/11/2020 30/11/2020
> 1,2,4-Triclorobenzene *	UNI EN ISO 15680:2005	<2	ige:	μg/L	[*] ≤ 190	(1)	25/11/2020 30/11/2020

Via G.M. Galanti, 16, 72100 Brindisi Tel. 0831 099501 Fax. 0831 099599 E-mail: dap.br@arpa.puglia.it

PEC dap.br.arpapuglia@pec.rupar.puglia.it

MD 182 - Rev. 5 del 18.10.2016

Pagina 3 di 8

LAB Nº 1119 L

Rapporto di Prova n. 20410-2020 REV. 0

Prova	Metodo	Risultato	Incertezza	UM	Limiti	Data inizio Data fine
CLOROBENZENI 2	EPA 3510C 1996 + EPA 8270E 2018					
> Esaclorobenzene *	EPA 3510C 1996 + EPA 8270E 2018	<0,001		μg/L	≤ 0,01 (1)	25/11/2020 30/11/2020
> Pentaclorobenzene *	EPA 3510C 1996 + EPA 8270E 2018	<0,5		μg/L	≤ 5 (1)	25/11/2020 30/11/2020
> 1,2,4,5-Tetraclorobenzene *	EPA 3510C 1996 + EPA 8270E 2018	<0,2		μg/L	≤ 1,8 (1)	25/11/2020 30/11/2020
POLICICLICI AROMATICI						
> Benzo(a)pirene *	EPA 3510C 1996 + EPA 8270E 2018	<0,002		μg/L	≤ 0,01 (1)	25/11/2020 30/11/2020
> Benzo(a)antracene *	EPA 3510C 1996 + EPA 8270E 2018	<0,01		μg/L	≤ 0,1 (1)	25/11/2020 30/11/2020
> Benzo(b)fluorantene *	EPA 3510C 1996 + EPA 8270E 2018	<0,01		μg/L ,	≤ 0,1 (1)	25/11/2020 30/11/2020
> Benzo(k)fluorantene *	EPA 3510C 1996 + EPA 8270E 2018	<0,02		μg/L	≤ 0,05 (1)	25/11/2020 30/11/2020
> Benzo(g,h,i)perilene *	EPA 3510C 1996 + EPA 8270E 2018	<0,001	÷	μg/L	≤ 0,01 (1)	25/11/2020 30/11/2020
> Dibenzo(a,h)antracene *	EPA 3510C 1996 + EPA 8270E 2018	<0,002		μg/L	≤ 0,01 (1)	25/11/2020 30/11/2020
> Crisene *	EPA 3510C 1996 + EPA 8270E 2018	<0,05		μg/L	≤ 5 (1)	25/11/2020 30/11/2020
> Pirene *	EPA 3510C 1996 + EPA 8270E 2018	<0,05		μg/L	≤ 50 (1)	25/11/2020 30/11/2020
> Indeno(1,2,3-cd)pirene *	EPA 3510C 1996 + EPA 8270E 2018	<0,02		μg/L	≤ 0,1 (1)	25/11/2020 30/11/2020
> Sommatoria IPA *	Calcolo	<0,05		μg/L	≤ 0,1 (1)	25/11/2020 30/11/2020
Test report: Somma delle voci	31, 32, 33, 36 Tab.2 All.5 Parte IV D.Lgs	152/06				
NITROBENZENI						
> Nitrobenzene *	EPA 3510C 1996 + EPA 8270E 2018	<0,35	·	μg/L	≤ 3,5 (1)	25/11/2020 30/11/2020
> 1,2-Dinitrobenzene *	EPA 3510C 1996 + EPA 8270E 2018	<1		μg/L	≤ 15 ⁽¹⁾	25/11/2020 30/11/2020
> 1,3-Dinitrobenzene *	EPA 3510C 1996 + EPA 8270E 2018	<0,35		μg/L	≤ 3,7 (1)	25/11/2020 30/11/2020
1,0-011111100001120110		-0,00		P9/∟	= 0,1	

Via G.M. Galanti, 16, 72100 Brindisi Tel. 0831 099501 Fax. 0831 099599 E-mail: dap.br@arpa.puglia.it

PEC dap.br.arpapuglia@pec.rupar.puglia.it

MD 182 - Rev. 5 del 18.10.2016

Pagina 4 di 8

LAB Nº 1119 L

Rapporto di Prova n. 20410-2020 REV. 0

Prova	Metodo	Risultato	Incertezza	UM	Limit	i	Data inizio Data fine
> 1-cloro-2-nitrobenzene *	EPA 3510C 1996 + EPA 8270E 2018	<0,05		μg/L	≤ 0,5	(1)	25/11/2020 30/11/2020
> 1-cloro-3-nitrobenzene *	EPA 3510C 1996 + EPA 8270E 2018	<0,05		µg/L	≤ 0,5	(1)	25/11/2020 30/11/2020
> 1-cloro-4-nitrobenzene *	EPA 3510C 1996 + EPA 8270E 2018	<0,05		μg/L	≤ 0,5	(1)	25/11/2020 30/11/2020
CLOROFENOLI							
> 2-Clorofenolo *	EPA 3510C 1996 + EPA 8270E 2018	<18		μg/L	≤ 180	(1)	25/11/2020 30/11/2020
> 2,4-Diclorofenolo *	EPA 3510C 1996 + EPA 8270E 2018	<10		μg/L	≤ 110	(1)	25/11/2020 30/11/2020
> 2,4,6-Triclorofenolo *	EPA 3510C 1996 + EPA 8270E 2018	<0,05		μg/L	≤ 5	(1)	25/11/2020 30/11/2020
> Pentaclorofenolo *	EPA 3510C 1996 + EPA 8270E 2018	<0,05	,	μg/L	≤ 0,5	(1)	25/11/2020 30/11/2020
FITOFARMACI	M.U. 2364:2010						
> Alachlor *	M.U. 2364:2010	<0,01		µg/L	≤ 0,1	(1)	25/11/2020 30/11/2020
> Aldrin *	M.U. 2364:2010	<0,003		μg/L	≤ 0,03	(1)	25/11/2020 30/11/2020
> Atrazina *	M.U. 2364:2010	<0,03		μg/L	≤ 0,3	(1)	25/11/2020 30/11/2020
> alfa-esaclorocicloesano *	M.U. 2364:2010	<0,01		μg/L	≤ 0,1	(1)	25/11/2020 30/11/2020
> beta-esaclorocicloesano *	M.U. 2364:2010	<0,01		μg/L	≤ 0,1	(1)	25/11/2020 30/11/2020
> gamma- esaclorocicloesano *	M.U. 2364:2010	<0,01		μg/L	≤ 0,1	(1)	25/11/2020 30/11/2020
> Clordano *	M.U. 2364:2010	<0,01		μg/L	≤ 0,1	(1)	25/11/2020 30/11/2020
> DDD, DDT, DDE *	M.U. 2364:2010	<0,01		μg/L	≤ 0,1	(1)	25/11/2020 30/11/2020
> Dieldrin *	M.U. 2364:2010	<0,003		μg/L [*]	≤ 0,03	(1)	25/11/2020 30/11/2020
> Endrin *	M.U. 2364:2010	<0,01		μg/L	≤ 0,1	(1)	25/11/2020 30/11/2020

Via G.M. Galanti, 16, 72100 Brindisi Tel. 0831 099501 Fax. 0831 099599 E-mail: dap.br@arpa.puglia.it

PEC dap.br.arpapuglia@pec.rupar.puglia.it

MD 182 - Rev. 5 del 18.10.2016

Pagina 5 di 8

LAB Nº 1119 L

Rapporto di Prova n. 20410-2020 REV. 0

Prova	Metodo	Risultato	Incertezza	UM	Limit	i °	Data inizio Data fine
> Sommatoria Fitofarmaci	* M.U. 2364:2010	<0,05		μg/L	≤ 0,5	(1)	25/11/2020 30/11/2020
ALTRI PESTICIDI	a a company of the co			e o	•	* N	
> Clorpirifos *	M.U. 2364:2010	<0,01		μg/L			25/11/2020 30/11/2020
> Deltametrina *	M.U. 2364:2010	<0,01		μg/L			25/11/2020 30/11/2020
> Dimetoato *	M.U. 2364:2010	<0,01		μg/L			25/11/2020 30/11/2020
> Fention *	M.U. 2364:2010	<0,01		μg/L			25/11/2020 30/11/2020
> Oxifluorfen *	M.U. 2364:2010	<0,01		μg/L			25/11/2020 30/11/2020
> Paration *	M.U. 2364:2010	<0,01		μg/L			25/11/2020 30/11/2020
> Simazina *	M.U. 2364:2010	<0,01		μg/L			25/11/2020 30/11/2020
pH *	UNI EN ISO 10523:2012	7,2	± 0,5	Unità di pH			25/11/2020 25/11/2020
Annotazioni: temperatura mi	surata: 19.4 °C orario misurazione: 11.00						
Conducibilità *	UNI ISO 27888:1995	3930	± 786	μS cm-1 a 20°C			25/11/2020 25/11/2020
Test report: Correzione dell	la temperatura mediante un dispostivo di com	pensazione della	temperatura				
Ossidabilità *	UNI 11758:2019	<0,5		mg/L di O2			25/11/2020 25/11/2020
BOD5 *	APHA Standard Methods 5210/D (Metodo respirometrico)	<5		mg/I O2			25/11/2020 30/11/2020
Azoto Ammoniacale *	UNI 11669:2017	<0,02		mg/L N-NH4			25/11/2020 25/11/2020
Nitriti *	UNI EN 26777:1994	<0,05		mg/L NO2	≤ 0,5	(1)	25/11/2020 25/11/2020
Nitrati *	MP-BR-C-AQ 02 rev 0 2018	23,8		mg/L NO3	u.		25/11/2020 25/11/2020
Cloruri *	APAT CNR IRSA 4090 B Man 29 2003	932	± 75	mg/L	e.		25/11/2020 25/11/2020
Cianuri (liberi) *	EPA Method OIA-1677-09 2010	<5		μg/L	≤ 50	(1)	25/11/2020 26/11/2020

Via G.M. Galanti, 16, 72100 Brindisi Tel. 0831 099501 Fax. 0831 099599 E-mail: dap.br@arpa.puglia.it

PEC dap.br.arpapuglia@pec.rupar.puglia.it

MD 182 - Rev. 5 del 18.10.2016

Pagina 6 di 8

LAB Nº 1119 L

Rapporto di Prova n. 20410-2020 REV. 0

Prova	Metodo	Risultato	Incertezza	UM	Limit	i	Data inizio Data fine
PCB *	EPA 3510C 1996 + EPA 8270D 2014	<0,001		μg/L	≤ 0,01	(1)	25/11/2020 30/11/2020
Magnesio *	UNI EN ISO 17294-2:2016	76	Si .	mg/L			01/12/2020 01/12/2020
Potassio *	UNI EN ISO 17294-2:2016	18,32	± 2,60	mg/L			01/12/2020 01/12/2020
Calcio *	UNI EN ISO 17294-2:2016	127	± 14	mg/L			01/12/2020 01/12/2020
Sodio *	UNI EN ISO 17294-2:2016	463	± 59	mg/L			01/12/2020 01/12/2020
Arsenico	UNI EN ISO 17294-2:2016	<2		µg/L	≤ 10	(1)	01/12/2020 01/12/2020
Cadmio	UNI EN ISO 17294-2:2016	<2		μg/L	≤ 5	(1)	01/12/2020 01/12/2020
Cromo VI *	ISO 23913:2006	<5 ,		μg/L		(1)	25/11/2020 26/11/2020
Cromo	UNI EN ISO 17294-2:2016	<4		μg/L	≤ 50	(1)	01/12/2020 01/12/2020
Ferro *	UNI EN ISO 17294-2:2016	<25	*	μg/L	≤ 200	(1)	01/12/2020 01/12/2020
Manganese	UNI EN ISO 17294-2:2016	<4		μg/L	≤ 50	(1)	01/12/2020 01/12/2020
Mercurio *	UNI EN ISO 17294-2:2016	<1		μg/L	≤ 1	(1)	01/12/2020 01/12/2020
Nichel	UNI EN ISO 17294-2:2016	<2		μg/L	≤ 20	(1)	01/12/2020 01/12/2020
Piombo	UNI EN ISO 17294-2:2016	<4		μg/L	≤ 10	(1)	01/12/2020 01/12/2020
Rame	UNI EN ISO 17294-2:2016	0,4	± 0,1	μg/L	≤ 1000	(1)	01/12/202 01/12/202

Via G.M. Galanti, 16, 72100 Brindisi Tel. 0831 099501 Fax. 0831 099599 E-mail: dap.br@arpa.puqlia.it

PEC dap.br.arpapuglia@pec.rupar.puglia.it

MD 182 - Rev. 5 del 18.10.2016

Pagina 7 di 8

LAB Nº 1119 L

Rapporto di Prova n. 20410-2020 REV. 0

ANALISI CHIMICHE

Pro	ova Metodo	Risultato	Incertezza	UM	Limiti	Data inizio Data fine
Zinco	UNI EN ISO 17294-2:2010	6 3	±1	μg/L	≤ 3000 (1)	01/12/2020 01/12/2020

⁻ Eventuali consigli, raccomandazioni, opinioni ed interpretazioni contenute nel presente rapporto di prova, non sono oggetto di accreditamento da parte di ACCREDIA.

Non conforme per il tenore in 1,1-dicloroetilene che risulta essere presente in quantità superiore alla Concentrazione Soglia di Contaminazione stabilita dal D.Lgs 152/06 e s.m.i. All.5, parte IV, Tab.2.

Il Dirigente Responsabile Dott. Vincenzo Musolino

La firma è sostituita dal nominativo a stampa del soggetto responsabile, ai sensi dell'art. 3 del D.Lgs 39/1993 (1) D.lgs 152/06 Tab.2 All.5 Parte IV

Note:

- I risultati contenuti nel presente rapporto di prova si riferiscono esclusivamente al campione/i o alla aliquota campionaria sottoposta a prova cosi come ricevuti. E' vietata la riproduzione del presente rapporto di prova o del suo contenuto, sia in toto sia in parte, se non per gli usi consentiti dalla Legge o con approvazione scritta da parte di questo Laboratorio.
- Il laboratorio, per campioni inerenti i controlli ufficiale sugli alimenti, conserva i campioni analizzati per i tempi previsti nella carta dei servizi, compatibilmente con la loro deteriorabilità, al fine di soddisfare eventuali richieste analitiche aggiuntive del cliente stesso.
- Nel caso in cui il valore sia espresso nella forma < x,xx deve intendersi che, per tutte le prove, tale valore risulta non quantificabile in quanto al di sotto del limite di quantificazione del laboratorio relativamente al metodo usato per la prova in oggetto ,oppure, per le sole prove biologiche, l'esatta quantificazione non si ritiene significativa ai fini della valutazione del campione. Nel caso il cui valore sia espresso nella forma >x,xx, deve intendersi che l'esatta quantificazione non si ritiene significativa ai fini della valutazione del campione.
- Per le prove accreditate che riguardano determinazioni di residui/tracce, quando la procedura di pretrattamento (es. concentrazione/purificazione/estrazione) può influenzare il recupero, questo è valutato ad ogni sessione analitica ed è riportato nel presente RdP in calce ai parametri interessati o nel giudizio, specificando se sia stato utilizzato nel calcolo dei risultati.
- Per le prove chimiche, l'incertezza indicata è espressa come incertezza estesa (U) con un fattore di copertura K=2 per un livello di fiducia pari al 95%.
- La modalità di campionamento eventualmente riportate in prima pagina non rientrano nell'ambito dell'accreditamento Accredia.

Fine Rapporto di prova Brindisi, 02/01/2021 11:48:27

^{*} Prova non Accreditata da Accredia

Via G.M. Galanti, 16, 72100 Brindisi Tel. 0831 099501 Fax. 0831 099599

E-mail: dap.br@arpa.puglia.it

PEC dap.br.arpapuglia@pec.rupar.puglia.it

MD 182 - Rev. 5 del 18.10.2016

Pagina 8 di 8

LAB Nº 1119 L

Rapporto di Prova n. 20410-2020 REV. 0

Via G.M. Galanti, 16, 72100 Brindisi Tel. 0831 099501 Fax. 0831 099599 E-mail: dap.br@arpa.puglia.it

PEC dap.br.arpapuglia@pec.rupar.puglia.it

MD 182 - Rev. 5 del 18.10.2016

Pagina 1 di 8

LAB Nº 1119 L

Rapporto di Prova n. 20335-2020 REV. 0

Categoria Merceologica:

ACQUE SOTTERRANEE

Materiale da saggio:

ACQUA DA POZZO SPIA

Procedura di campionamento: CAMPIONAMENTO A CURA DEL PRELEVATORE

Cliente:

REGIONE PUGLIA - Lungomare N. Sauro 33 - Bari

Presentato:

da SERVIZI TERRITORIALI ARPA PUGLIA DAP BRINDISI con verbale 871

Consegna in data:

24/11/2020

Temperatura d'arrivo rilevata: 4°C

Data Prelievo:

23/11/2020

Prelevato c/o:

Brindisi - Formica Ambiente S.r.I. - Pozzo N°8

Sigillo:

Integro

Conservazione:

Frigorifero

Prova	Metodo	Risultato	Incertezza	, UM	Limiti	Data inizio Data fine
COMPOSTI ORGANICI AROMATICI	UNI EN ISO 15680:2005					
> Benzene *	UNI EN ISO 15680:2005	<0,2		μg/L	≤ 1 (1)	25/11/2020 30/11/2020
> Etilbenzene *	UNI EN ISO 15680:2005	<3		μg/L	≤ 50 (1)	25/11/2020 30/11/2020
> Stirene *	UNI EN ISO 15680:2005	<3		μg/L	≤ 25 (1)	25/11/2020 30/11/2020
> Toluene *	UNI EN ISO 15680:2005	<1		μg/L	≤ 15 (1)	25/11/2020 30/11/2020
> m,p-Xilene *	UNI EN ISO 15680:2005	<0,05		μg/L		25/11/2020 30/11/2020
ALIFATICI CLORURATI CANCEROGENI						
> Triclorometano *	UNI EN ISO 15680:2005	<0,05		μg/L	≤ 0,15 (1)	25/11/2020 30/11/2020
> Cloruro di vinile *	UNI EN ISO 15680:2005	<0,05		μg/L	≤ 0,5 (1)	25/11/2020 30/11/2020
> 1,2-Dicloroetano *	UNI EN ISO 15680:2005	<0,7		μg/L	≤ 3 (1)	25/11/2020 30/11/2020
> 1,1-Dicloroetilene *	UNI EN ISO 15680:2005	0,180	± 0,079	μg/L	≤ 0,05 (1)	25/11/2020 30/11/2020
> Tricloroetilene *	UNI EN ISO 15680:2005	0,06	± 0,03	μg/L	≤ 1,5 ⁽¹⁾	25/11/2020 30/11/2020
> Tetracloroetilene *	UNI EN ISO 15680:2005	0,16	± 0,07	μg/L	≤ 1,1 (1)	25/11/2020 30/11/2020
> Esaclorobutadiene *	UNI EN ISO 15680:2005	0,018	± 0,008	μg/L	≤ 0,15 (1)	25/11/2020 30/11/2020

Via G.M. Galanti, 16, 72100 Brindisi Tel. 0831 099501 Fax. 0831 099599 E-mail: dap.br@arpa.puglia.it

PEC dap.br.arpapuglia@pec.rupar.puglia.it

MD 182 - Rev. 5 del 18.10.2016

Pagina 2 di 8

LAB Nº 1119 L

Rapporto di Prova n. 20335-2020 REV. 0

Prova	Metodo	Risultato	Incertezza	ÚM	Limiti	Data inizio Data fine
> Sommatoria Organo Alogenati	UNI EN ISO 15680:2005	<1		μg/L	≤ 10 (1)	25/11/2020 30/11/2020
ALIFATICI CLORURATI NON CANCEROGENI						6
> 1,1-Dicloroetano *	UNI EN ISO 15680:2005	<0,8		μg/L	≤ 810 (1)	25/11/2020 30/11/2020
> 1,2-Dicloroetilene *	UNI EN ISO 15680:2005	<0,8		μg/L	≤ 60 (1)	25/11/2020 30/11/2020
> 1,2-Dicloropropano *	UNI EN ISO 15680:2005	<0,08		μg/L	≤ 0,15 (1)	25/11/2020 30/11/2020
> 1,1,2-Tricloroetano *	UNI EN ISO 15680:2005	<0,08		μg/L	≤ 0,2 (1)	25/11/2020 30/11/2020
> 1,2,3-Tricloropropano *	UNI EN ISO 15680:2005	<0,001		μg/L	≤ 0,001 (1)	25/11/2020 30/11/2020
> 1,1,2,2-Tetracloroetano *	UNI EN ISO 15680:2005	<0,01		μg/L ·	≤ 0,05 (1)	25/11/2020 30/11/2020
ALIFATICI ALOGENATI CANCEROGENI				·		*
> Tribromometano *	UNI EN ISO 15680:2005	<0,01		μg/L	≤ 0,3 (1)	25/11/2020 30/11/2020
> 1,2-Dibromoetano *	UNI EN ISO 15680:2005	<0,001		μg/L	≤ 0,001 ⁽¹⁾	25/11/2020 30/11/2020
> Dibromoclorometano *	UNI EN ISO 15680:2005	<0,01		μg/L	≤ 0,13 (1)	25/11/2020 30/11/2020
> Bromodiclorometano *	UNI EN ISO 15680:2005	<0,04		μg/L	≤ 0,17 (1)	25/11/2020 30/11/2020
CLOROBENZENI 1						
> Monoclorobenzene *	UNI EN ISO 15680:2005	<3		μg/L	≤ 40 (1)	25/11/2020 30/11/2020
> 1,2-Diclorobenzene *	UNI EN ISO 15680:2005	<2		μg/L	≤ 270 (1)	25/11/2020 30/11/2020
> 1,4-Diclorobenzene *	UNI EN ISO 15680:2005	<0,1		μg/L	≤ 0,5 (1)	25/11/2020 30/11/2020
> 1,2,4-Triclorobenzene *	UNI EN ISO 15680:2005	<2	w?	μg/L	≤ 190° (1)	25/11/2020 30/11/2020

Via G.M. Galanti, 16, 72100 Brindisi Tel. 0831 099501 Fax. 0831 099599 E-mail: dap.br@arpa.puglia.it

PEC dap.br.arpapuglia@pec.rupar.puglia.it

MD 182 - Rev. 5 del 18.10.2016

Pagina 3 di 8

LAB Nº 1119 L

Rapporto di Prova n. 20335-2020 REV. 0

Prova	Metodo	Risultato	Incertezza	UM	Limiti	Data inizio Data fine
CLOROBENZENI 2	EPA 3510C 1996 + EPA 8270E 2018					
> Esaclorobenzene *	EPA 3510C 1996 + EPA 8270E 2018	<0,001		μg/L	≤ 0,01 (1)	25/11/2020 30/11/2020
> Pentaclorobenzene *	EPA 3510C 1996 + EPA 8270E 2018	<0,5		μg/L	≤ 5 (1)	25/11/2020 30/11/2020
> 1,2,4,5-Tetraclorobenzene *	EPA 3510C 1996 + EPA 8270E 2018	<0,2		μg/L	≤ 1,8 (1)	25/11/2020 30/11/2020
POLICICLICI AROMATICI						
> Benzo(a)pirene *	EPA 3510C 1996 + EPA 8270E 2018	<0,002		μ <mark>g</mark> /L	≤ 0,01 (1)	25/11/2020 30/11/2020
> Benzo(a)antracene *	EPA 3510C 1996 + EPA 8270E 2018	<0,01		μg/L	≤ 0,1 (1)	25/11/2020 30/11/2020
> Benzo(b)fluorantene *	EPA 3510C 1996 + EPA 8270E 2018 '	<0,01	į.	μg/L	≤ 0,1 (1)	25/11/2020 30/11/2020
> Benzo(k)fluorantene *	EPA 3510C 1996 + EPA 8270E 2018	<0,02		μg/L	≤ 0,05 (1)	25/11/2020 30/11/2020
> Benzo(g,h,i)perilene *	EPA 3510C 1996 + EPA 8270E 2018	<0,001		μg/L	≤ 0,01 (1)	25/11/2020 30/11/2020
> Dibenzo(a,h)antracene *	EPA 3510C 1996 + EPA 8270E 2018	<0,002		μg/L	≤ 0,01 (1)	25/11/2020 30/11/2020
> Crisene *	EPA 3510C 1996 + EPA 8270E 2018	<0,05		μg/L	≤ 5 (1)	25/11/2020 30/11/2020
> Pirene *	EPA 3510C 1996 + EPA 8270E 2018	<0,05		μg/L	≤ 50 (1)	25/11/2020 30/11/2020
> Indeno(1,2,3-cd)pirene *	EPA 3510C 1996 + EPA 8270E 2018	<0,02		μg/L	≤ 0,1 (1)	25/11/2020 30/11/2020
> Sommatoria IPA *	Calcolo	<0,05		μg/L	≤ 0,1 (1)	25/11/2020 30/11/2020
Test report: Somma delle voci	31, 32, 33, 36 Tab.2 All.5 Parte IV D.Lgs	152/06				
NITROBENZENI						
> Nitrobenzene *	EPA 3510C 1996 + EPA 8270E 2018	<0,35	×	μg/L	≤ 3,5 (1)	25/11/2020 30/11/2020
> 1,2-Dinitrobenzene *	EPA 3510C 1996 + EPA 8270E 2018	<1		μg/L	≤ 15 (1)	25/11/2020 30/11/2020
> 1,3-Dinitrobenzene *	EPA 3510C 1996 + EPA 8270E 2018	<0,35		μg/L	≤ 3,7 (1)	25/11/2020 30/11/2020

Via G.M. Galanti, 16, 72100 Brindisi Tel. 0831 099501 Fax. 0831 099599 E-mail: dap.br@arpa.puglia.it

PEC dap.br.arpapuglia@pec.rupar.puglia.it

MD 182 - Rev. 5 del 18.10.2016

Pagina 4 di 8

LAB Nº 1119 L

Rapporto di Prova n. 20335-2020 REV. 0

Prova	Metodo	Risultato	Incertezza	UM	Limit	i	Data inizio Data fine
> 1-cloro-2-nitrobenzene *	EPA 3510C 1996 + EPA 8270E 2018	<0,05		μg/L	≤ 0,5	(1)	25/11/2020 30/11/2020
> 1-cloro-3-nitrobenzene *	EPA 3510C 1996 + EPA 8270E 2018	<0,05		μg/L	≤ 0,5	(1)	25/11/2020 30/11/2020
> 1-cloro-4-nitrobenzene *	EPA 3510C 1996 + EPA 8270E 2018	<0,05		μg/L	≤ 0,5	(1)	25/11/2020 30/11/2020
CLOROFENOLI							
> 2-Clorofenolo *	EPA 3510C 1996 + EPA 8270E 2018	<18		μg/L	≤ 180	(1)	25/11/2020 30/11/2020
> 2,4-Diclorofenolo *	EPA 3510C 1996 + EPA 8270E 2018	<10		μg/L	≤ 110	(1)	25/11/2020 30/11/2020
> 2,4,6-Triclorofenolo *	EPA 3510C 1996 + EPA 8270E 2018	<0,05		μg/L	≤ 5	(1)	25/11/2020 30/11/2020
> Pentaclorofenolo *	EPA 3510C 1996 + EPA 8270E , 2018	<0,05		µg/L	≤ 0,5	(1)	25/11/2020 30/11/2020
TTOFARMACI	M.U. 2364:2010						
> Alachlor *	M.U. 2364:2010	<0,01		μg/L	≤ 0,1	(1)	25/11/2020 30/11/2020
> Aldrin *	M.U. 2364:2010	<0,003		μg/L	≤ 0,03	(1)	25/11/2020 30/11/2020
> Atrazina *	M.U. 2364:2010	<0,03		μ <mark>g</mark> /L	≤ 0,3	(1)	25/11/2020 30/11/2020
> alfa-esaclorocicloesano *	M.U. 2364:2010	<0,01		μg/L	≤ 0,1	(1)	25/11/2020 30/11/2020
> beta-esaclorocicloesano *	M.U. 2364:2010	<0,01		μg/L	≤ 0,1	(1)	25/11/2020 30/11/2020
> gamma- saclorocicloesano *	M.U. 2364:2010	<0,01		µg/L	≤ 0,1	(1)	25/11/2020 30/11/2020
> Clordano *	M.U. 2364:2010	<0,01		μg/L	≤ 0,1	(1)	25/11/2020 30/11/2020
> DDD, DDT, DDE *	M.U. 2364:2010	<0,01		μg/L	≤ 0,1	(1)	25/11/2020 30/11/2020
> Dieldrin *	M.U. 2364:2010	<0,003	¥	μg/L	°≤ 0,03	(1)	25/11/2020 30/11/2020
> Endrin *	M.U. 2364:2010	<0,01		μg/L	≤ 0,1	(1)	25/11/2020 30/11/2020

Via G.M. Galanti, 16, 72100 Brindisi Tel. 0831 099501 Fax. 0831 099599 E-mail: dap.br@arpa.puglia.it

PEC dap.br.arpapuglia@pec.rupar.puglia.it

MD 182 - Rev. 5 del 18.10.2016

Pagina 5 di 8

LAB Nº 1119 L

Rapporto di Prova n. 20335-2020 REV. 0

Prova	Metodo	Risultato	Incertezza	UM	Limi	ti	Data inizio Data fine
> Sommatoria Fitofarmaci	* M.U. 2364:2010	<0,05		μg/L	≤ 0,5	(1)	25/11/2020 30/11/2020
ALTRI PESTICIDI	,			¥) 4	*		e n
> Clorpirifos *	M.U. 2364:2010	<0,01		μg/L			25/11/2020 30/11/2020
> Deltametrina *	M.U. 2364:2010	<0,01		μg/L			25/11/2020 30/11/2020
> Dimetoato *	M.U. 2364:2010	<0,01		μg/L			25/11/2020 30/11/2020
> Fention *	M.U. 2364:2010	<0,01		μg/L			25/11/2020 30/11/2020
> Oxifluorfen *	M.U. 2364:2010	<0,01		μg/L			25/11/2020 30/11/2020
> Paration *	M.U. 2364:2010	<0,01		μg/L '			25/11/2020 30/11/2020
> Simazina *	M.U. 2364:2010	<0,01		μg/L			25/11/2020 30/11/2020
рН *	UNI EN ISO 10523:2012	7,1	± 0,5	Unità di pH	÷		24/11/2020 24/11/2020
Annotazioni: temperatura mis	urata: 15.4 °C orario misurazione: 10.00						
Conducibilità *	UNI ISO 27888:1995	3730	± 746	μS cm-1 a 20°C			24/11/2020 24/11/2020
Test report: Correzione della	temperatura mediante un dispostivo di com	pensazione della t	emperatura				
Ossidabilità *	UNI 11758:2019	<0,5		mg/L di O2			24/11/2020 24/11/2020
BOD5 *	APHA Standard Methods 5210/D (Metodo respirometrico)	<5		mg/l O2			24/11/2020 29/11/2020
Azoto Ammoniacale *	UNI 11669:2017	<0,02		mg/L N-NH4			24/11/2020 24/11/2020
Nitriti *	UNI EN 26777:1994	<0,05		mg/L NO2	≤ 0,5	(1)	24/11/2020 24/11/2020
Nitrati *	MP-BR-C-AQ 02 rev 0 2018	23,5		mg/L NO3	•		24/11/2020 24/11/2020
Cloruri *	APAT CNR IRSA 4090 B Man 29 2003	867	± 69	mg/L	4		24/11/2020 24/11/2020
Cianuri (liberi) *	EPA Method OIA-1677-09 2010	<8		μg/L	≤ 50	(1)	25/11/2020 26/11/2020

Via G.M. Galanti, 16, 72100 Brindisi Tel. 0831 099501 Fax. 0831 099599 E-mail: dap.br@arpa.puglia.it

PEC dap.br.arpapuglia@pec.rupar.puglia.it

MD 182 - Rev. 5 del 18.10.2016

Pagina 6 di 8

LAB Nº 1119 L

Rapporto di Prova n. 20335-2020 REV. 0

Prova	Metodo	Risultato	Incertezza	UM	Limiti	Data inizio Data fine
PCB *	EPA 3510C 1996 + EPA 8270D 2014	<0,001		μg/L	≤ 0,01 (1) 25/11/2020 30/11/2020
Magnesio *	UNI EN ISO 17294-2:2016	75		mg/L	,	24/11/2020 24/11/2020
Potassio *	UNI EN ISO 17294-2:2016	17,50	± 2,40	mg/L		24/11/2020 24/11/2020
Calcio *	UNI EN ISO 17294-2:2016	137	± 15	mg/L		24/11/2020 24/11/2020
Sodio *	UNI EN ISO 17294-2:2016	452	± 58	mg/L		24/11/2020 24/11/2020
Arsenico	UNI EN ISO 17294-2:2016	<2		μg/L	≤ 10 (1) 24/11/2020 24/11/2020
Cadmio	UNI EN ISO 17294-2:2016	<2		μg/L	≤ 5 (1) 24/11/2020 24/11/2020
Cromo VI *	ISO 23913:2006	<5	1.	μg/L	(1) 25/11/2020, 26/11/2020
Cromo	UNI EN ISO 17294-2:2016	<4		μg/L	≤ 50 (1) 24/11/2020 24/11/2020
Ferro *	UNI EN ISO 17294-2:2016	<25	8	μg/L	≤ 200 (1) 24/11/2020 24/11/2020
Manganese	UNI EN ISO 17294-2:2016	<4		μg/L	≤ 50 (1) 24/11/2020 24/11/2020
Mercurio *	UNI EN ISO 17294-2:2016	<1		μg/L	≤ 1 (1) 24/11/2020 24/11/2020
Nichel	UNI EN ISO 17294-2:2016	<2		μg/L	≤ 20 (1) 24/11/2020 24/11/2020
Piombo	UNI EN ISO 17294-2:2016	<4		μg/L	≤ 10 (1) 24/11/2020 24/11/2020
Rame	UNI EN ISO 17294-2:2016	1,4	± 0,2	μg/L	≤ 1000 (1) 24/11/2020 24/11/2020

Via G.M. Galanti, 16, 72100 Brindisi Tel. 0831 099501 Fax. 0831 099599 E-mail: dap.br@arpa.puglia.it

PEC dap.br.arpapuglia@pec.rupar.puglia.it

MD 182 - Rev. 5 del 18.10.2016

Pagina 7 di 8

LAB Nº 1119 L

Rapporto di Prova n. 20335-2020 REV. 0

ANALISI CHIMICHE

	Prova	Metodo	Risultato	Incertezza	UM	Limiti	Data inizio Data fine
Zinco		UNI EN ISO 17294-2:2016	5	± 1	μg/L	≤ 3000 (1)	24/11/2020 24/11/2020

⁻ Eventuali consigli, raccomandazioni, opinioni ed interpretazioni contenute nel presente rapporto di prova, non sono oggetto di accreditamento da parte di ACCREDIA.

Non conforme per il tenore in 1,1-dicloroetilene che risulta essere presente in quantità superiore alla Concentrazione Soglia di Contaminazione stabilita dal D.Lgs 152/06 e s.m.i. All.5, parte IV, Tab.2.

Il Dirigente Responsabile Dott. Vincenzo Musolino

La firma è sostituita dal nominativo a stampa del soggetto responsabile, ai sensi dell'art. 3 del D.Lgs 39/1993

(1) D.lqs 152/06 Tab.2 All.5 Parte IV

Note:

- I risultati contenuti nel presente rapporto di prova si riferiscono esclusivamente al campione/i o alla aliquota campionaria sottoposta a prova così come ricevuti. E' vietata la riproduzione del presente rapporto di prova o del suo contenuto, sia in toto sia in parte, se non per gli usi consentiti dalla Legge o con approvazione scritta da parte di questo Laboratorio.
- Il laboratorio, per campioni inerenti i controlli ufficiale sugli alimenti, conserva i campioni analizzati per i tempi previsti nella carta dei servizi, compatibilmente con la loro deteriorabilità, al fine di soddisfare eventuali richieste analitiche aggiuntive del cliente stesso.
- Nel caso in cui il valore sia espresso nella forma < x,xx deve intendersi che, per tutte le prove, tale valore risulta non quantificabile in quanto al di sotto del limite di quantificazione del laboratorio relativamente al metodo usato per la prova in oggetto ,oppure, per le sole prove biologiche, l'esatta quantificazione non si ritiene significativa ai fini della valutazione del campione. Nel caso il cui valore sia espresso nella forma >x,xx, deve intendersi che l'esatta quantificazione non si ritiene significativa ai fini della valutazione del campione.
- Per le prove accreditate che riguardano determinazioni di residui/tracce, quando la procedura di pretrattamento (es. concentrazione/purificazione/estrazione) può influenzare il recupero, questo è valutato ad ogni sessione analitica ed è riportato nel presente RdP in calce ai parametri interessati o nel giudizio, specificando se sia stato utilizzato nel calcolo dei risultati.
- Per le prove chimiche, l'incertezza indicata è espressa come incertezza estesa (U) con un fattore di copertura K=2 per un livello di fiducia pari al 95%.
- La modalità di campionamento eventualmente riportate in prima pagina non rientrano nell'ambito dell'accreditamento Accredia.

Fine Rapporto di prova Brindisi, 02/01/2021 11:47:02

^{*} Prova non Accreditata da Accredia

Via G.M. Galanti, 16, 72100 Brindisi Tel. 0831 099501 Fax. 0831 099599 E-mail: dap.br@arpa.puglia.it

PEC dap.br.arpapuglia@pec.rupar.puglia.it

MD 182 - Rev. 5 del 18.10.2016

Pagina 8 di 8

LAB Nº 1119 L

Rapporto di Prova n. 20335-2020 REV. 0

. Via G.M. Galanti, 16, 72100 Brindisi Tel. 0831 099501 Fax. 0831 099599 E-mail: dap.br@arpa.puglia.it

PEC dap.br.arpapuglia@pec.rupar.puglia.it

MD 182 - Rev. 5 del 18.10.2016

Pagina 1 di 7

LAB Nº 1119 L

Rapporto di Prova n. 20544-2020 REV. 0

Categoria Merceologica:

ACQUE SOTTERRANEE

Materiale da saggio:

ACQUA DA POZZO SPIA

Procedura di campionamento: CAMPIONAMENTO A CURA DEL PRELEVATORE

Cliente:

REGIONE PUGLIA - Lungomare N. Sauro 33 - Bari

Presentato:

da SERVIZI TERRITORIALI ARPA PUGLIA DAP BRINDISI con verbale 878

Consegna in data:

26/11/2020

Temperatura d'arrivo rilevata: 8°C

Data Prelievo:

25/11/2020

Prelevato c/o:

Brindisi - Formica Ambiente S.r.I.- Pozzo N°10.

Sigillo:

Integro

Conservazione:

Frigorifero

Prova	Metodo	Risultato	Incertezza	UM	Limiti		Data inizio Data fine
COMPOSTI ORGANICI AROMATICI	UNI EN ISO 15680:2005						
> Benzene *	UNI EN ISO 15680:2005	<0,2		μg/L	≤ 1	(1)	26/11/2020 07/12/2020
> Etilbenzene *	UNI EN ISO 15680:2005	<3		μg/L	≤ 50	(1)	26/11/2020 07/12/2020
> Stirene *	UNI EN ISO 15680:2005	<3		μg/L	≤ 25	(1)	26/11/2020 07/12/2020
> Toluene *	UNI EN ISO 15680:2005	<1		μg/L	≤ 15	(1)	26/11/2020 07/12/2020
> m,p-Xilene *	UNI EN ISO 15680:2005	<0,05		μg/L			26/11/2020 07/12/2020
ALIFATICI CLORURATI CANCEROGENI							
> Triclorometano *	UNI EN ISO 15680:2005	<0,05		μg/L	≤ 0,15	(1)	26/11/2020 07/12/2020
> Cloruro di vinile *	UNI EN ISO 15680:2005	<0,05		μg/L	≤ 0,5	(1)	26/11/2020 07/12/2020
> 1,2-Dicloroetano *	UNI EN ISO 15680:2005	<0,7		μg/L	≤ 3	(1)	26/11/2020 07/12/2020
> 1,1-Dicloroetilene *	UNI EN ISO 15680:2005	<0,01		μg/L	≤ 0,05	(1)	26/11/2020 07/12/2020
> Tricloroetilene *	UNI EN ISO 15680:2005	<0,01		μg/L	≤ 1,5	(1)	26/11/2020 07/12/2020
> Tetracloroetilene *	UNI EN ISO 15680:2005	0,09	± 0,04	μg/L	≤ 1,1	(1)	26/11/2020 07/12/2020
> Esaclorobutadiene *	UNI EN ISO 15680:2005	0,017	± 0,007	μg/L	≤ 0,15	(1)	26/11/2020 07/12/2020

Via G.M. Galanti, 16, 72100 Brindisi Tel. 0831 099501 Fax. 0831 099599 E-mail: dap.br@arpa.puglia.it

PEC dap.br.arpapuglia@pec.rupar.puglia.it

MD 182 - Rev. 5 del 18.10.2016

Pagina 2 di 7

LAB Nº 1119 L

Rapporto di Prova n. 20544-2020 REV. 0

Prova	Metodo	Risultato	Incertezza	UM	Limiti		Data inizio Data fine
> Sommatoria Organo Alogenati	UNI EN ISO 15680:2005	<1		μg/L	≤ 10	(1)	26/11/2020 07/12/2020
ALIFATICI CLORURATI NON CANCEROGENI			*	2	ď	34	
> 1,1-Dicloroetano *	UNI EN ISO 15680:2005	<0,8		μg/L	≤ 810	(1)	26/11/2020 07/12/2020
> 1,2-Dicloroetilene *	UNI EN ISO 15680:2005	<0,8		μg/L	≤ 60	(1)	26/11/2020 07/12/2020
> 1,2-Dicloropropano *	UNI EN ISO 15680:2005	<0,08		μg/L	≤ 0,15	(1)	26/11/2020 07/12/2020
> 1,1,2-Tricloroetano *	UNI EN ISO 15680:2005	<0,08		μg/L	≤ 0,2	(1)	26/11/2020 07/12/2020
> 1,2,3-Tricloropropano *	UNI EN ISO 15680:2005	<0,001		μg/L	≤ 0,001	(1)	26/11/2020 07/12/2020
> 1,1,2,2-Tetracloroetano *	UNI EN ISO 15680:2005	<0,01		μg/L	≤ 0,05	(1)	26/11/2020 07/12/2020
ALIFATICI ALOGENATI CANCEROGENI		8	w				
> Tribromometano *	UNI EN ISO 15680:2005	<0,01		μg/L	≤ 0,3	(1)	26/11/2020 07/12/2020
> 1,2-Dibromoetano *	UNI EN ISO 15680:2005	<0,001		μg/L	≤ 0,001	(1)	26/11/2020 07/12/2020
> Dibromoclorometano *	UNI EN ISO 15680:2005	<0,01		μg/L	≤ 0,13	(1)	26/11/2020 07/12/2020
> Bromodiclorometano *	UNI EN ISO 15680:2005	<0,04		μg/L	≤ 0,17	(1)	26/11/2020 07/12/2020
CLOROBENZENI I							
> Monoclorobenzene *	UNI EN ISO 15680:2005	<3		μg/L	≤ 40	(1)	26/11/2020 07/12/2020
> 1,2-Diclorobenzene *	UNI EN ISO 15680:2005	<2		μg/L	≤ 270	(1)	26/11/2020 07/12/2020
> 1,4-Diclorobenzene *	UNI EN ISO 15680:2005	<0,1	x.	μg/L	≤ 0,5	(1)	26/11/2020 07/12/2020
> 1,2,4-Triclorobenzene *	UNI EN ISO 15680:2005	<2	*	μg/L	[*] ≤ 190	(1)	26/11/2020 07/12/2020

Via G.M. Galanti, 16, 72100 Brindisi Tel. 0831 099501 Fax. 0831 099599 E-mail: dap.br@arpa.puglia.it

PEC dap.br.arpapuglia@pec.rupar.puglia.it

MD 182 - Rev. 5 del 18.10.2016

Pagina 3 di 7

LAB Nº 1119 L

Rapporto di Prova n. 20544-2020 REV. 0

Prova	Metodo	Risultato	Incertezza	UM	Limiti		Data inizio Data fine
CLOROBENZENI 2	EPA 3510C 1996 + EPA 8270E 2018			н			
> Esaclorobenzene *	EPA 3510C 1996 + EPA 8270E 2018	<0,001		μg/L	≤ 0,01	(1)	26/11/2020 07/12/2020
> Pentaclorobenzene *	EPA 3510C 1996 + EPA 8270E 2018	<0,5		μg/L	≤ 5	(1)	26/11/2020 07/12/2020
> 1,2,4,5-Tetraclorobenzene *	EPA 3510C 1996 + EPA 8270E 2018	<0,2		μg/L	≤ 1,8	(1)	26/11/2020 07/12/2020
POLICICLICI AROMATICI							
> Benzo(a)pirene *	EPA 3510C 1996 + EPA 8270E 2018	<0,002		μg/L	≤ 0,01	(1)	26/11/2020 07/12/2020
> Benzo(a)antracene *	EPA 3510C 1996 + EPA 8270E 2018	<0,01		μg/L	≤ 0,1	(1)	26/11/2020 07/12/2020
> Benzo(b)fluorantene *	EPA 3510C 1996 + EPA 8270E 2018	<0,01		μg/L	≤ 0,1	(1)	26/11/2020 07/12/2020
> Benzo(k)fluorantene *	EPA 3510C 1996 + EPA 8270E 2018	<0,02		μg/L	≤ 0,05	(1)	26/11/2020 07/12/2020
> Benzo(g,h,i)perilene *	EPA 3510C 1996 + EPA 8270E 2018	<0,001		μg/L	≤ 0,01	(1)	26/11/2020 07/12/2020
> Dibenzo(a,h)antracene *	EPA 3510C 1996 + EPA 8270E 2018	<0,002		μg/L	≤ 0,01	(1)	26/11/2020 07/12/2020
> Crisene *	EPA 3510C 1996 + EPA 8270E 2018	<0,05		μg/L	≤ 5	(1)	26/11/2020 07/12/2020
> Pirene *	EPA 3510C 1996 + EPA 8270E 2018	<0,05		μg/L	≤ 50	(1)	26/11/2020 07/12/2020
> Indeno(1,2,3-cd)pirene *	EPA 3510C 1996 + EPA 8270E 2018	<0,02		μ <mark>g/</mark> L	≤ 0,1	(1)	26/11/2020 07/12/2020
> Sommatoria IPA *	Calcolo	<0,05		µg/L	≤ 0,1	(1)	26/11/2020 07/12/2020
Test report: Somma delle voci	31, 32, 33, 36 Tab.2 All.5 Parte IV D.Lgs	152/06			*		
NITROBENZENI							
> Nitrobenzene *	EPA 3510C 1996 + EPA 8270E 2018 *	<0,3	×	μg/L	≤ 3,5	(1)	26/11/2020 07/12/2020
> 1,2-Dinitrobenzene *	EPA 3510C 1996 + EPA 8270E 2018 .	<1		μg/L	≤ 15	(1)	26/11/2020 07/12/2020
> 1,3-Dinitrobenzene *	EPA 3510C 1996 + EPA 8270E 2018	<0,4		μg/L	≤ 3,7	(1)	26/11/2020 07/12/2020

Via G.M. Galanti, 16, 72100 Brindisi Tel. 0831 099501 Fax. 0831 099599

E-mail: dap.br@arpa.puglia.it

PEC dap.br.arpapuglia@pec.rupar.puglia.it

MD 182 - Rev. 5 del 18.10.2016

Pagina 4 di 7

LAB Nº 1119 L

Rapporto di Prova n. 20544-2020 REV. 0

Prova	Metodo	Risultato	Incertezza	UM	Limit	i	Data inizio Data fine
> 1-cloro-2-nitrobenzene *	EPA 3510C 1996 + EPA 8270E 2018	<0,05		μg/L	≤ 0,5	(1)	26/11/2020 07/12/2020
> 1-cloro-3-nitrobenzene *	EPA 3510C 1996 + EPA 8270E 2018	<0,05	*	μg/L	≤ 0,5	(1)	26/11/2020 07/12/2020
> 1-cloro-4-nitrobenzene *	EPA 3510C 1996 + EPA 8270E 2018	<0,05		μg/L	≤ 0,5	(1)	26/11/2020 07/12/2020
LOROFENOLI							
> 2-Clorofenolo *	EPA 3510C 1996 + EPA 8270E 2018	<18		μg/L	≤ 180	(1)	26/11/2020 07/12/2020
> 2,4-Diclorofenolo *	EPA 3510C 1996 + EPA 8270E 2018	<10		μg/L	≤ 110	(1)	26/11/2020 07/12/2020
> 2,4,6-Triclorofenolo *	EPA 3510C 1996 + EPA 8270E 2018	<0,5		μ <mark>g</mark> /L	≤ 5	(1)	26/11/2020 07/12/2020
> Pentaclorofenolo *	EPA 3510C 1996 + EPA 8270E , 2018	<0,05		μg/L	≤ 0,5	(1)	26/11/2020 07/12/2020
ITOFARMACI	M.U. 2364:2010						
> Alachlor *	M.U. 2364:2010	<0,01		μg/L	≤ 0,1	(1)	26/11/2020 07/12/2020
> Aldrin *	M.U. 2364:2010	<0,003		μg/L	≤ 0,03	(1)	26/11/2020 07/12/2020
> Atrazina *	M.U. 2364:2010	<0,03		μg/L	≤ 0,3	(1)	26/11/2020 07/12/2020
> alfa-esaclorocicloesano *	M.U. 2364:2010	<0,01		μg/L	≤ 0,1	(1)	26/11/2020 07/12/2020
> beta-esaclorocicloesano *	M.U. 2364:2010	<0,01		μg/L	≤ 0,1	(1)	26/11/2020 07/12/2020
> gamma- saclorocicloesano *	M.U. 2364:2010	<0,01		μg/L	≤ 0,1	(1)	26/11/2020 07/12/2020
> Clordano *	M.U. 2364:2010	<0,01		μg/L	≤ 0,1	(1)	26/11/2020 07/12/2020
> DDD, DDT, DDE *	M.U. 2364:2010	<0,01		μg/L	≤ 0,1	(1)	26/11/2020 07/12/2020
> Dieldrin *	M.U. 2364:2010 [*]	<0,003	A	μg/L	[*] ≤ 0,03	(1)	26/11/2020 07/12/2020
> Endrin *	M.U. 2364:2010	<0,01		μg/L	≤ 0,1	(1)	26/11/2020 07/12/2020

Via G.M. Galanti, 16, 72100 Brindisi Tel. 0831 099501 Fax. 0831 099599 E-mail: dap.br@arpa.puglia.it

PEC dap.br.arpapuglia@pec.rupar.puglia.it

MD 182 - Rev. 5 del 18.10.2016

Pagina 5 di 7

LAB Nº 1119 L

Rapporto di Prova n. 20544-2020 REV. 0

Prova	Metodo	Risultato	Incertezza	UM	Limi	ti	Data inizio Data fine
> Sommatoria Fitofarmaci	* M.U. 2364:2010	<0,05		μg/L	≤ 0,5	(1)	26/11/2020 07/12/2020
ALTRI PESTICIDI							
> Clorpirifos *	M.U. 2364:2010	<0,01		μg/L			26/11/2020 07/12/2020
> Deltametrina *	M.U. 2364:2010	<0,01		μg/L			26/11/2020 07/12/2020
> Dimetoato *	M.U. 2364:2010	<0,01		μg/L			26/11/2020 07/12/2020
> Fention *	M.U. 2364:2010	<0,01		μg/L			26/11/2020 07/12/2020
> Oxifluorfen *	M.U. 2364:2010	<0,01		μg/L			26/11/2020 07/12/2020
> Paration *	M.U. 2364:2010	<0,01	,	μg/L			26/11/2020 07/12/2020
> Simazina *	M.U. 2364:2010	<0,01		μg/L			26/11/2020 07/12/2020
pH *	UNI EN ISO 10523:2012	7,1	± 0,5	Unità di pH		*	26/11/2020 26/11/2020
Annotazioni: temperatura misu	ırata: 18.0 °C orario misurazione: 10.30						
Conducibilità *	UNI ISO 27888:1995	3270	± 654	μS cm-1 a 20°C			26/11/2020 26/11/2020
Test report: Correzione della	temperatura mediante un dispostivo di comp	pensazione della t	emperatura				
Ossidabilità *	UNI 11758:2019	<0,5		mg/L di O2			26/11/2020 26/11/2020
BOD5 *	APHA Standard Methods 5210/D (Metodo respirometrico)	<5		mg/I O2			26/11/2020 01/12/2020
Azoto Ammoniacale *	UNI 11669:2017	<0,02		mg/L N-NH4			26/11/2020 26/11/2020
Nitriti *	UNI EN 26777:1994	<0,05		mg/L NO2	≤ 0,5	(1)	26/11/2020 26/11/2020
Nitrati *	MP-BR-C-AQ 02 rev 0 2018	20,7		mg/L NO3			26/11/2020 26/11/2020
Cloruri *	APAT CNR IRSA 4090 B Man 29 2003	, 747	± 60	mg/L		*	26/11/2020 26/11/2020
Magnesio *	UNI EN ISO 17294-2:2016	67		mg/L			01/12/2020 01/12/2020

Via G.M. Galanti, 16, 72100 Brindisi Tel. 0831 099501 Fax. 0831 099599

E-mail: dap.br@arpa.puglia.it

PEC dap.br.arpapuglia@pec.rupar.puglia.it

MD 182 - Rev. 5 del 18.10.2016

Pagina 6 di 7

LAB Nº 1119 L

Rapporto di Prova n. 20544-2020 REV. 0

ANALISI CHIMICHE

Prova	Metodo	Risultato	Incertezza	UM	Limiti	Data inizio Data fine
Potassio *	UNI EN ISO 17294-2:2016	14,98	± 2,10	mg/L		01/12/2020 01/12/2020
Calcio *	UNI EN ISO 17294-2:2016	131	± 14	mg/L	*	01/12/2020 01/12/2020
Sodio *	UNI EN ISO 17294-2:2016	397	± 52	mg/L		01/12/2020 01/12/2020
Arsenico	UNI EN ISO 17294-2:2016	<2		μg/L	≤ 10 (1)	01/12/2020 01/12/2020
Cadmio	UNI EN ISO 17294-2:2016	<2		μg/L	≤ 5 (1)	01/12/2020 01/12/2020
Cromo	UNI EN ISO 17294-2:2016	<4		μg/L	≤ 50 (1)	01/12/2020 01/12/2020
Ferro *	UNI EN ISO 17294-2:2016	<25		μg/L	≤ 200 (1)	01/12/2020 01/12/2020
Manganese	UNI EN ISO 17294-2:2016	<4	i i	μg/L	≤ 50 (1)	01/12/2020 01/12/2020
Mercurio *	UNI EN ISO 17294-2:2016	<1		μg/L	≤ 1 (1)	01/12/2020 01/12/2020
Nichel	UNI EN ISO 17294-2:2016	<2		μg/L	≤ 20 (1)	01/12/2020 01/12/2020
Piombo	UNI EN ISO 17294-2:2016	<4		μg/L	≤ 10 (1)	01/12/2020 01/12/2020
Rame	UNI EN ISO 17294-2:2016	<0,4		μg/L	≤ 1000 (1)	01/12/2020 01/12/2020
Zinco	UNI EN ISO 17294-2:2016	<3		μg/L	≤ 3000 (1)	01/12/2020 01/12/2020

⁻ Eventuali consigli, raccomandazioni, opinioni ed interpretazioni contenute nel presente rapporto di prova, non sono oggetto di accreditamento da parte di ACCREDIA.

Conforme, per i parametri esaminati, alle Concentrazioni Soglia di Contaminazione stabilite dal D.Lgs 152/06 e s.m.i. All.5, parte IV, Tab.2.

Il Dirigente Responsabile Dott. Vincenzo Musolino

La firma è sostituita dal nominativo a stampa del soggetto responsabile, ai sensi dell'art. 3 del D.Lgs 39/1993 (1) D.lgs 152/06 Tab.2 All.5 Parte IV

^{*} Prova non Accreditata da Accredia

Via G.M. Galanti, 16, 72100 Brindisi Tel. 0831 099501 Fax. 0831 099599 E-mail: dap.br@arpa.puglia.it

PEC dap.br.arpapuglia@pec.rupar.puglia.it

MD 182 - Rev. 5 del 18.10.2016

Pagina 7 di 7

LAB Nº 1119 L

Rapporto di Prova n. 20544-2020 REV. 0

Note:

- I risultati contenuti nel presente rapporto di prova si riferiscono esclusivamente al campione/i o alla aliquota campionaria sottoposta a prova cosi come ricevuti. E' vietata la riproduzione del presente rapporto di prova o del suo contenuto, sia in toto sia in parte, se non per gli usi consentiti dalla Legge o con approvazione scritta da parte di questo Laboratorio.
- Il laboratorio, per campioni inerenti i controlli ufficiale sugli alimenti, conserva i campioni analizzati per i tempi previsti nella carta dei servizi, compatibilmente con la loro deteriorabilità, al fine di soddisfare eventuali richieste analitiche aggiuntive del cliente stesso.
- Nel caso in cui il valore sia espresso nella forma < x,xx deve intendersi che, per tutte le prove, tale valore risulta non quantificabile in quanto al di sotto del limite di quantificazione del laboratorio relativamente al metodo usato per la prova in oggetto ,oppure, per le sole prove biologiche, l'esatta quantificazione non si ritiene significativa ai fini della valutazione del campione. Nel caso il cui valore sia espresso nella forma >x,xx, deve intendersi che l'esatta quantificazione non si ritiene significativa ai fini della valutazione del campione.
- Per le prove accreditate che riguardano determinazioni di residui/tracce, quando la procedura di pretrattamento (es. concentrazione/purificazione/estrazione) può influenzare il recupero, questo è valutato ad ogni sessione analitica ed è riportato nel presente RdP in calce ai parametri interessati o nel giudizio, specificando se sia stato utilizzato nel calcolo dei risultati.
- Per le prove chimiche, l'incertezza indicata è espressa come incertezza estesa (U) con un fattore di copertura K=2 per un livello di fiducia pari al 95%.
- La modalità di campionamento eventualmente riportate in prima pagina non rientrano nell'ambito dell'accreditamento Accredia.

Fine Rapporto di prova Brindisi, 02/01/2021 12:05:39